Skip to main content
Log in

Magnetic properties of magnetoactive spin clusters

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

An Errata to this article was published on 01 February 2013

Abstract

A simple model is proposed for describing magnetic properties of magnetoactive nanoclusters, which permits exact analytic solution. Exact expressions are obtained for thermodynamic characteristics of the model, which hold in the entire range of temperatures, magnetic fields, and interaction parameters. It is found that in the case of easy-axis anisotropy, the field dependence of magnetization of a nanocluster consisting of N particles with a spin of 1/2 has [N/2] fractional plateaus ([…] is the integer part) corresponding to polarized phases with ruptures singlet pairs. A nonmonotonic behavior observed for the magnetic susceptibility of an easy-plane cluster is typical of gap magnets. The spin gap between the ground state and excited states is proportional to the anisotropy parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Kodama and A. E. Berkowitz, Phys. Rev. B: Condens. Matter 59, 6321 (1999).

    Article  ADS  Google Scholar 

  2. R. H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999).

    Article  ADS  Google Scholar 

  3. H. Hasegawa, Physica A (Amsterdam) 351, 273 (2005).

    ADS  Google Scholar 

  4. S. A. Cannas, A. C. Magalhaes, and F. A. Tamarit, Phys. Rev. B: Condens. Matter 61, 11521 (2000).

    Article  ADS  Google Scholar 

  5. R. Sessoli, D. Gatteschi, A. Caneschi, and M. Novak, Nature (London) 365, 141 (1993).

    Article  ADS  Google Scholar 

  6. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, Nature (London) 383, 145 (1996).

    Article  ADS  Google Scholar 

  7. W. Wernsdorfer and R. Sessoli, Science (Washington) 284, 133 (1999).

    Article  ADS  Google Scholar 

  8. E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunneling of Magnetic Moment (Cambridge University Press, Cambridge, 1998).

    Book  Google Scholar 

  9. O. Kahn and C. J. Martinez, Science (Washington) 279, 44 (1998).

    Article  ADS  Google Scholar 

  10. J. Tejada, E. M. Chudnovsky, E. del Barco, J. M. Hernandez, and T. P. Spiller, Nanotechnology 12, 181 (2001).

    Article  ADS  Google Scholar 

  11. S. V. Maleev, Usp. Fiz. Nauk 172(6), 617 (2002) [Phys.—Usp. 45 (6), 569 (2002)].

    Article  MathSciNet  Google Scholar 

  12. R. S. Gekht, Usp. Fiz. Nauk 159, 261 (1989) [Sov. Phys.—Usp. 32, 871 (1989)].

    Article  Google Scholar 

  13. A. Collins, J. McEvoy, D. Robinson, C. J. Hamer, and Z. Weihong, Phys. Rev. B: Condens. Matter 73, 024407 (2006).

    Article  ADS  Google Scholar 

  14. L. N. Bulaevskii, Zh. Eksp. Teor. Fiz. 44, 1008 (1963) [Sov. Phys. JETP 17, 684 (1963)].

    Google Scholar 

  15. J. C. Bonner and H. W. J. Blote, Phys. Rev. B: Condens. Matter 25, 6959 (1982).

    Article  ADS  Google Scholar 

  16. E. Dagotto and T. M. Rise, Science (Washington) 271, 618 (1996).

    Article  ADS  Google Scholar 

  17. V. O. Cheranovskii and E. V. Ezerskaya, Fiz. Nizk. Temp. (Kharkov) 34(3), 287 (2008) [Low Temp. Phys. 34 (3), 223 (2008)].

    Google Scholar 

  18. A. Oosawa, M. Ishi, and H. Tanaka, J. Phys.: Condens. Matter 11, 265 (1999).

    Article  ADS  Google Scholar 

  19. H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushni- kov, K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y. Ueda, Phys. Rev. Lett. 82, 3168 (1999).

    Article  ADS  Google Scholar 

  20. F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Yamamoto and S. Miyashita, Phys. Rev. B: Condens. Matter 48, 13, 9528 (1993).

    Google Scholar 

  22. U. Schollwock and T. Jolicoeur, Europhys. Lett. 30, 493 (1995).

    Article  ADS  Google Scholar 

  23. J. P. Renard, M. Verdaguer, and L. P. Regnault, J. Appl. Phys. 63, 3538 (1988).

    Article  ADS  Google Scholar 

  24. K. Hida, J. Phys. Soc. Jpn. 63, 2359 (1994).

    Article  ADS  Google Scholar 

  25. T. Tonegawa, T. Nishida, and M. Kaburagi, Physica B (Amsterdam) 246, 368 (1998).

    ADS  Google Scholar 

  26. T. Tonegawa, K. Okamoto, K. Okunishi, K. Nomura, and M. Kaburagi, Physica B (Amsterdam) 346–347, 50 (2004).

    Google Scholar 

  27. A. A. Zvyagin and V. O. Cheranovskii, Fiz. Nizk. Temp. (Kharkov) 35(6), 578 (2009) [Low Temp. Phys. 35 (6), 455 (2009)].

    Google Scholar 

  28. J. C. Bonner, S. A. Friedberg, H. Kobayashi, D. L. Meier, and H. W. J. Blöte, Phys. Rev. B: Condens. Matter 27, 248 (1983).

    Article  ADS  Google Scholar 

  29. M. Isobe, E. Ninomiya, A. N. Vasil’ev, and Y. Ueda, J. Phys. Soc. Jpn. 71, 1423 (2002).

    Article  ADS  Google Scholar 

  30. A. G. Anders, V. S. Bondarenko, S. B. Bordovsky, A. Feger, and A. Orendacheva, Fiz. Nizk. Temp. (Kharkov) 23(11), 1195 (1997) [Low Temp. Phys. 23 (11), 895 (1997)].

    Google Scholar 

  31. S. S. Aplesnin and G. A. Petrakovskii, Fiz. Tverd. Tela (St. Petersburg) 41(9), 1650 (1999) [Phys. Solid State 41 (9), 1511 (1999)].

    Google Scholar 

  32. S. S. Aplesnin, Zh. Eksp. Teor. Fiz. 117(1), 218 (2000) [JETP 90 (1), 194 (2000)].

    Google Scholar 

  33. V. E. Sinitsyn, I. G. Bostrem, and A. S. Ovchinnikov, J. Phys. A: Math. Gen. 40, 645 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. I. G. Bostrem, A. S. Ovchinnikov, and V. E. Sinitsyn, Teor. Mat. Fiz. 149(2), 262 (2006) [Theor. Math. Phys. 149 (2), 1527 (2006)].

    MathSciNet  Google Scholar 

  35. I. G. Bostrem, A. S. Boyarchenkov, A. A. Konovalov, A. S. Ovchinnikov, and V. E. Sinitsyn, Zh. Eksp. Teor. Fiz. 124(3), 680 (2003) [JETP 97 (3), 615 (2003)].

    Google Scholar 

  36. G. Shreder, Zh. F. Ot, and R. Mereni, Usp. Khim. 36, 993 (1967).

    Google Scholar 

  37. J. Baugh, A. Kleinhammes, D. Han, Q. Wang, and Y. Wu, Science (Washington) 294, 1505 (2001).

    Article  ADS  Google Scholar 

  38. C. S. Yannoni, J. Am. Chem. Soc. 92, 5237 (1970).

    Article  Google Scholar 

  39. E. B. Fel’dman and M. G. Rudavets, Zh. Eksp. Teor. Fiz. 125(2), 233 (2004) [JETP 98 (2), 207 (2004)].

    Google Scholar 

  40. M. G. Rudavets and E. B. Fel’dman, Pis’ma Zh. Eksp. Teor. Fiz. 75(12), 760 (2002) [JETP Lett. 75 (12), 635 (2002)].

    Google Scholar 

  41. E. B. Fel’dman and M. G. Rudavets, Chem. Phys. Lett. 396, 458 (2004).

    Article  ADS  Google Scholar 

  42. A. R. Kessel, R. R. Nigmatullin, A. A. Khamzin, and N. A. Yakovleva, Teor. Mat. Fiz. 145(3), 414 (2005) [Theor. Math. Phys. 145 (3), 1727 (2005)].

    MathSciNet  Google Scholar 

  43. E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (New York) 16, 407 (1961).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett. 78, 1984 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Khamzin.

Additional information

Original Russian Text © A.M. Khamzin, R.R. Nigmatullin, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 6, pp. 1163–1174.

An erratum to this article is available at http://dx.doi.org/10.1134/S1063776113070017.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khamzin, A.M., Nigmatullin, R.R. Magnetic properties of magnetoactive spin clusters. J. Exp. Theor. Phys. 111, 1028–1038 (2010). https://doi.org/10.1134/S1063776110120162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110120162

Keywords

Navigation