Skip to main content
Log in

Temperature and concentration dependences of the electrical resistivity for alloys of plutonium with americium under normal conditions

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The temperature and concentration dependences of the electrical resistivity for alloys of americium with plutonium are analyzed in terms of the multiband conductivity model for binary disordered substitution-type alloys. For the case of high temperatures (T > ΘD, ΘD is the Debye temperature), a system of self-consistent equations of the coherent potential approximation has been derived for the scattering of conduction electrons by impurities and phonons without any constraints on the interaction intensity. The definitions of the shift and broadening operator for a single-electron level are used to show qualitatively and quantitatively that the pattern of the temperature dependence of the electrical resistivity for alloys is determined by the balance between the coherent and incoherent contributions to the electron-phonon scattering and that the interference conduction electron scattering mechanism can be the main cause of the negative temperature coefficient of resistivity observed in some alloys involving actinides. It is shown that the great values of the observed resistivity may be attributable to interband transitions of charge carriers and renormalization of their effective mass through strong s-d band hybridization. The concentration and temperature dependences of the resistivity for alloys of plutonium and americium calculated in terms of the derived conductivity model are compared with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Smoluchowskii, Phys. Rev. Sect. A 125, 1577 (1962).

    ADS  Google Scholar 

  2. A. M. Boring and J. L. Smith, Los Alamos Sci. 26, 90 (2000); S. S. Hecker and J. C. Martz, Los Alamos Sci. 26, 238 (2000).

    Google Scholar 

  3. M. B. Brodsky, Rep. Prog. Phys. 41, 1547 (1978).

    Article  ADS  Google Scholar 

  4. J.-C. Griveau, J. Rebizant, G. H. Lander, and G. Kotliar, Phys. Rev. Lett. 94, 097002 (2005).

    Article  ADS  Google Scholar 

  5. J. L. Sarrao, L. A. Morales, J. D. Thompson, B.L. Scott, G. R. Stewart, F. Wastin, J. Rebizant, P. Boulet, E. Colineau, and G. H. Lander, Nature (London) 420, 297 (2002).

    Article  ADS  Google Scholar 

  6. A. V. Kolomiets, J.-C. Griveau, V. Klosek, P. Faure, C. Genestier, N. Baclet, and F. Wastin, High Pressure Res. 26, 523 (2006).

    Article  ADS  Google Scholar 

  7. N. Baclet, M. Dormeval, L. Havela, J. M. Fournier, C. Valot, F. Wastin, T. Gouder, E. Colineau, C. T. Walker, S. Bremier, C. Apostolidis, and G. H. Lander, Phys. Rev. B: Condens. Matter 75, 035101 (2007).

    Article  ADS  Google Scholar 

  8. K. T. Moore and G. van der Laan, Rev. Mod. Phys. 81, 235 (2009).

    Article  ADS  Google Scholar 

  9. A. V. Kolomiets, J.-C. Griveau, S. Heathman, A. B. Shick, F. Wastin, P. Faure, V. Klosek, C. Genestier, N. Baclet, and L. Havela, Europhys. Lett. 82, 57007 (2008).

    Article  ADS  Google Scholar 

  10. V. Dallacasa, J. Phys. F: Met. Phys. 11, 177 (1981).

    Article  ADS  Google Scholar 

  11. S. Méot-Reymond and J. M. Fournirer, J. Alloys Compd. 232, 119 (1996).

    Article  Google Scholar 

  12. R. Jullien, M. T. Beal-Monod, and B. Cogblin, Phys. Rev. B: Solid State 4, 1441 (1974).

    ADS  Google Scholar 

  13. M. Fluss, B. D. Wirth, M. Wall, T. E. Felter, M. J. Caturla, A. Kubota, and T. Diaz de la Rubia, J. Alloys Compd. 368, 62 (2004).

    Article  Google Scholar 

  14. P. Boulet, F. Wastin, E. Coliheau, J. C. Griveau, and J. Rebizant, J. Phys.: Condens. Matter 15, S2305 (2003).

    Article  ADS  Google Scholar 

  15. Yu. Yu. Tsiovkin and L. Yu. Tsiovkina, J. Phys.: Condens. Matter 19, 056207 (2007).

    Article  ADS  Google Scholar 

  16. Yu. Yu. Tsiovkin, M. A. Korotin, A. O. Shorikov, V. I. Anisimov, A. N. Voloshinskii, A. V. Lukoyanov, E. S. Koneva, A. A. Povzner, and M. A. Surin, Phys. Rev. B: Condens. Matter 76, 075119 (2007).

    Article  ADS  Google Scholar 

  17. N. F. Mott, Adv. Phys. 13, 325 (1964).

    Article  ADS  Google Scholar 

  18. A. O. Shorikov, A. V. Lukoyanov, M. A. Korotin, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 72, 024458 (2005).

    Article  ADS  Google Scholar 

  19. A. B. Shick, V. Drchal, and L. Havela, Europhys. Lett. 69, 588 (2005).

    Article  ADS  Google Scholar 

  20. J. H. Shim, K. Haule, and G. Kotliar, Nature (London) 446, 513 (2007).

    Article  ADS  Google Scholar 

  21. V. I. Anisimov, A. O. Shorikov, and J. Kuneš, J. Alloys Compd. 444–445, 42 (2007).

    Article  Google Scholar 

  22. Yu. Yu. Tsiovkin, A. V. Lukoyanov, A. A. Povzner, E. S. Koneva, M. A. Korotin, A. O. Shorikov, V. I. Anisimov, A. N. Voloshinskii, and V. V. Dremov, Phys. Rev. B: Condens. Matter 80, 155 137 (2009).

    Article  Google Scholar 

  23. Yu. Yu. Tsiovkin, V. V. Dremov, E. S. Koneva, A. A. Povzner, A. N. Filanovich, and A. N. Petrova, Fiz. Tverd. Tela (St. Petersburg) 52(1), 3 (2010) [Phys. Solid State 52 (1), 1 (2010)].

    Google Scholar 

  24. F. Brouers and A. V. Vedyayev, Phys. Rev. B: Solid State 5, 348 (1972).

    ADS  Google Scholar 

  25. Yu. A. Izyumov and V. I. Anisimov, Electronic Structure of Strongly Correlated Materials (Regular and Chaotic Dynamics Research Center, Institute of Computer Science, Moscow, 2008; Springer, Heidelberg, 2010).

    Google Scholar 

  26. A. N. Voloshinskii and A. G. Obukhov, Fiz. Met. Metalloved. 91(3), 26 (2001) [Phys. Met. Metallogr. 91 (3),238 (2001)].

    Google Scholar 

  27. A. B. Chen, G. Weisz, and A. Sher, Phys. Rev. B: Solid State 5, 2897 (1972).

    ADS  Google Scholar 

  28. J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).

    Article  ADS  Google Scholar 

  29. Yu. Yu. Tsiovkin, A. N. Voloshinskii, V. V. Gapontsev, V. V. Ustinov, A. G. Obykhov, A. L. Nikolaev, I. A. Nekrasov, and A. V. Lukoyanov, Phys. Rev. B: Condens. Matter 72, 224204 (2005).

    Article  ADS  Google Scholar 

  30. J. C. Lashley, J. Singleton, A. Migliori, J. B. Betts, R. A. Fisher, J. L. Smith, and R. J. McQueeney, Phys. Rev. Lett. 91, 205901 (2003).

    Article  ADS  Google Scholar 

  31. A. N. Filanovich, A. A. Povzner, V. Yu. Bodryakov, Yu. Yu. Tsiovkin, and V. V. Dremov, Pis’ma Zh. Tekh. Fiz. 35(20), 1 (2009) [Tech. Phys. Lett. 35 (10), 929 (2009)].

    Google Scholar 

  32. W. Muller, R. Schenkel, H. E. Schmidt, J. C. Spirlet, D. L. McElroy, R. O. A. Hall, and M. J. Mortimer, J. Low Temp. Phys. 30, 561 (1978).

    Article  ADS  Google Scholar 

  33. E. Olsen and R. O. Elliott, Phys. Rev. Sect. A 139, 437 (1965).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Tsiovkin.

Additional information

Original Russian Text © Yu.Yu. Tsiovkin, A.A. Povzner, L.Yu. Tsiovkina, V.V. Dremov, L.R. Kabirova, A.A. Dyachenko, V.B. Bystrushkin, M.V. Ryabukhina, A.V. Lukoyanov, A.O. Shorikov, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 6, pp. 1153–1162.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiovkin, Y.Y., Povzner, A.A., Tsiovkina, L.Y. et al. Temperature and concentration dependences of the electrical resistivity for alloys of plutonium with americium under normal conditions. J. Exp. Theor. Phys. 111, 1019–1027 (2010). https://doi.org/10.1134/S1063776110120150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110120150

Keywords

Navigation