Skip to main content
Log in

Electronic structure of an oxygen vacancy in Al2O3 from the results of Ab Initio quantum-chemical calculations and photoluminescence experiments

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The electronic structure of an oxygen vacancy in α-Al2O3 and γ-Al2O3 is calculated. The calculation predicts an absorption peak at an energy of 6.4 and 6.3 eV in α-Al2O3 and γ-Al2O3, respectively. The luminescence and luminescence excitation spectra of amorphous Al2O3 are measured using synchrotron radiation. The presence of a luminescence band at 2.9 eV and a peak at 6.2 eV in the luminescence excitation spectrum indicates the presence of oxygen vacancies in amorphous Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Kingon, J.-P. Maria, and S. K. Streiffer, Nature (London) 406, 1032 (2000).

    Article  Google Scholar 

  2. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).

    Article  ADS  Google Scholar 

  3. T. V. Perevalov and V. A. Gritsenko, Usp. Fiz. Nauk 180(6), 587 (2010) [Phys.-Usp. 53 (6), 561 (2010)].

    Article  Google Scholar 

  4. V. A. Gritsenko, K. A. Nasyrov, Yu. N. Novikov, A. L. Aseev, S. Y. Yoon, J.-W. Lee, E.-H. Lee, and C. W. Kim, Solid-State Electron. 47, 1651 (2003).

    Article  ADS  Google Scholar 

  5. C.-H. Cheng and J. Y.-M. Lee, Appl. Phys. Lett. 91, 192903 (2007).

    Article  ADS  Google Scholar 

  6. K. A. Nasyrov, S. S. Shaimeev, and V. A. Gritsenko, Zh. Eksp. Teor. Fiz. 136(5), 910 (2009) [JETP 109 (5), 786 (2009)].

    Google Scholar 

  7. N. Novikov, V. A. Gritsenko, and K. A. Nasyrov, Appl. Phys. Lett. 94, 222 904 (2009).

    Google Scholar 

  8. Yu. N. Novikov, V. A. Gritsenko, and K. A. Nasyrov, Pis’ma Zh. Eksp. Teor. Fiz. 89(10), 599 (2009) [JETP Lett. 89 (10), 506 (2009)].

    Google Scholar 

  9. G. W. Arnold and D. W. Compton, Phys. Rev. Lett. 4, 66 (1960).

    Article  ADS  Google Scholar 

  10. B. G. Draeger and G. P. Summer, Phys. Rev. Lett. 19, 1172 (1979).

    ADS  Google Scholar 

  11. P. W. M. Jacobs and E. A. Kotomin, Phys. Rev. Lett. 69, 1411 (1992).

    Article  ADS  Google Scholar 

  12. K. J. Caulfeld, R. Cooper, and J. F. Boas, Phys. Rev. B: Condens. Matter 47, 55 (1993).

    Article  ADS  Google Scholar 

  13. A. Stashans, E. Kotomin, and J.-L. Galais, Phys. Rev. B: Condens. Matter 49, 14854 (1994).

    Article  ADS  Google Scholar 

  14. B. D. Evans and M. Stapelbroek, Phys. Rev. B: Condens. Matter: Solid State 18, 7089 (1978).

    Article  ADS  Google Scholar 

  15. K. Matsunaga, T. Tanaka, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B: Condens. Matter 68, 085110 (2003).

    Article  ADS  Google Scholar 

  16. A. I. Surdo, V. S. Kortov, V. A. Pustovarov, and V. Yu. Yakovlev, Phys. Status Solidi C 2, 527 (2005).

    Article  ADS  Google Scholar 

  17. M. J. Springis and J. A. Valbis, Phys. Status Solidi B 123, 335 (1984).

    Article  ADS  Google Scholar 

  18. H. R. Kaufman, J. Vac. Sci. Technol. 15, 272 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  19. H. R. Kaufman, J. J. Cuomo, and J. M. E. Harper, J. Vac. Sci. Technol. 23, 725 (1982).

    Article  Google Scholar 

  20. G. Zimmerer, Nucl. Instrum. Methods Phys. Res., Sect. A 308, 178 (1991).

    Article  ADS  Google Scholar 

  21. I. A. Brytov and Yu. N. Romashchenko, Fiz. Tverd. Tela (Leningrad) 20(3), 664 (1978) [Sov. Phys. Solid State 20 (3), 384 (1978)].

    Google Scholar 

  22. F. R. Chen, J. G. Davis, and J. J. Fripat, J. Catal. 133, 263 (1992).

    Article  Google Scholar 

  23. H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, Phys. Rev. B: Condens. Matter 73, 054108 (2006).

    Article  ADS  Google Scholar 

  24. D. Liu and J. Robertson, Microelectron. Eng. 86, 1668 (2009).

    Article  Google Scholar 

  25. http://www.quantum-espresso.org/.

  26. S. Baroni, A. D. Corso, S. de Gironcoli, and P. Giannozzi, http://www.pwscf.org.

  27. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  28. W. Kohn and L. Sham, Phys. Rev. Sect. A 140, 1133 (1965).

    MathSciNet  ADS  Google Scholar 

  29. M. C. Payne, M. P. Teter, D. C. Allan, and T. A. Arias, Rev. Mod. Phys. 64, 4 (1992).

    Article  Google Scholar 

  30. D. Vanderbilt, Phys. Rev. B: Condens. Matter 41, 7892 (1990).

    Article  ADS  Google Scholar 

  31. G. Gutierrez, A. Taga, and B. Johansson, Phys. Rev. B: Condens. Matter 65, 012101 (2001).

    Article  ADS  Google Scholar 

  32. R. H. French, J. Am. Ceram. Soc. 73, 477 (1990).

    Article  Google Scholar 

  33. C. Wolverton and K. C. Hass, Phys. Rev. B: Condens. Matter 63, 024102 (2000).

    Article  ADS  Google Scholar 

  34. S. D. Mo and W. Y. Ching, Phys. Rev. B: Condens. Matter 57, 15 219 (1998).

    Article  Google Scholar 

  35. B. Holm, R. Ahuja, Y. Yourdshahyan, B. Johansson, and B. I. Lundqvist, Phys. Rev. B: Condens. Matter 59, 12 777 (1999).

    Article  Google Scholar 

  36. C. K. Lee, E. Cho, H. S. Lee, K. S. Seol, and S. Han, Phys. Rev. B: Condens. Matter 76, 245 110 (2007).

    Google Scholar 

  37. T. V. Perevalov, A. V. Shaposhnikov, V. A. Gritsenko, H. Wong, J. H. Han, and C. W. Kim, Pis’ma Zh. Eksp. Teor. Fiz. 85(3), 197 (2007) [JETP Lett. 85 (3), 165 (2007)].

    Google Scholar 

  38. S. D. Mo, Y. N. Xu, and W. Y. Ching, J. Am. Ceram. Soc. 80, 1193 (1997).

    Article  Google Scholar 

  39. E. T. Arakawa and M. W. Williams, J. Phys. Chem. Sol. 29, 735 (1968).

    Article  ADS  Google Scholar 

  40. A. I. Surdo, V. S. Kortov, and F. F. Sharafutdinov, Radiat. Prot. Dosim. 84, 261 (1999).

    Google Scholar 

  41. V. N. Parmon, R. F. Khairutdinov, and K. I. Zamaraev, Fiz. Tverd. Tela (Leningrad) 16(9), 2572 (1974) [Sov. Phys. Solid State 16 (9), 1672 (1974)].

    Google Scholar 

  42. C.-C. Yeh, T. P. Ma, N. Ramaswamy, N. Rocklein, D. Gealy, T. Graettinger, and K. Min, Appl. Phys. Lett. 91, 113 521 (2007).

    Google Scholar 

  43. I. I. Mil’man, V. S. Kortov, and S. V. Nikiforov, Fiz. Tverd. Tela (St. Petersburg) 40(2), 229 (1998) [Phys. Solid State 40 (2), 206 (1998)].

    Google Scholar 

  44. A. I. Slesarev and V. S. Kortov, Phys. Status Solidi C 2, 519 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Perevalov.

Additional information

Original Russian Text © V.A. Pustovarov, V.Sh. Aliev, T.V. Perevalov, V.A. Gritsenko, A.P. Eliseev, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 38, No. 6, pp. 1119–1126.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustovarov, V.A., Aliev, V.S., Perevalov, T.V. et al. Electronic structure of an oxygen vacancy in Al2O3 from the results of Ab Initio quantum-chemical calculations and photoluminescence experiments. J. Exp. Theor. Phys. 111, 989–995 (2010). https://doi.org/10.1134/S1063776110120113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110120113

Keywords

Navigation