Skip to main content
Log in

Ionization of a multilevel atom by ultrashort laser pulses

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Specific features of ionization of single atoms by laser fields of a near-atomic strength are investigated. Calculations are performed for silver atoms interacting with femtosecond laser pulses with wavelengths λ = 800 nm (Ti:Sapphire) and λ = 1.064 μm (Nd:YAG). The dependences of the probability of ionization and of the form of the photoelectron energy spectra on the field of laser pulses for various values of their duration are considered. It is shown that the behavior of the probability of ionization in the range of subatomic laser pulse fields is in good agreement with the Keldysh formula. However, when the field strength attains values close to the atomic field strength, the discrepancies in these dependences manifested in a decrease in the ionization rate (ionization stabilization effect) or in its increase (accelerated ionization) are observed. These discrepancies are associated with the dependence of the population dynamics of excited discrete energy levels of the atom on the laser pulse field amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1964)].

    Google Scholar 

  2. V. S. Popov, Usp. Fiz. Nauk 174(9), 921 (2004) [Phys.—Usp. 47 (9), 855 (2004)].

    Article  Google Scholar 

  3. K. Burnett, P. L. Knight, B. R. M. Piraux, and V. C. Reed, Phys. Rev. Lett. 66, 301 (1991).

    Article  ADS  Google Scholar 

  4. L. D. Noordam, H. Stapelfeldt, D. I. Duncan, and T. F. Gallagher, Phys. Rev. Lett. 68, 1496 (1992).

    Article  ADS  Google Scholar 

  5. R. B. Vrijen, J. H. Hoogenraad, H. G. Muller, and L. D. Noordam, Phys. Rev. Lett. 70, 3016 (1993).

    Article  ADS  Google Scholar 

  6. J. H. Hoogenraad, R. B. Vrijen, and L. D. Noordam, Phys. Rev. A: At., Mol., Opt. Phys. 50, 4133 (1994).

    ADS  Google Scholar 

  7. R. R. Jones, D. W. Schumacher, and P. H. Bucksbaum, Phys. Rev. A: At., Mol., Opt. Phys. 47, R49 (1993).

    ADS  Google Scholar 

  8. J. Parker and C. R. Stroud, Phys. Rev. A: At., Mol., Opt. Phys. 41, 1602 (1990).

    ADS  Google Scholar 

  9. H. R. Reiss, Phys. Rev. A: At., Mol., Opt. Phys. 22, 1786 (1980).

    ADS  Google Scholar 

  10. H. R. Reiss, Phys. Rev. A: At., Mol., Opt. Phys. 42, 1476 (1990).

    ADS  Google Scholar 

  11. M. Pont and M. Gavrila, Phys. Rev. Lett. 65, 2362 (1990).

    Article  ADS  Google Scholar 

  12. K. C. Kulander, K. J. Schafer, and J. L. Krause, Phys. Rev. Lett. 66, 2601 (1991).

    Article  ADS  Google Scholar 

  13. P. Marte and P. Zoller, Phys. Rev. A: At., Mol., Opt. Phys. 43, 1512 (1991).

    ADS  Google Scholar 

  14. H. R. Reiss, Phys. Rev. A: At., Mol., Opt. Phys. 46, 391 (1992).

    ADS  Google Scholar 

  15. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, Zh. Eksp. Teor. Fiz. 120(6), 1336 (2001) [JETP 93 (6)], 1155 (2001)].

    Google Scholar 

  16. E. A. Volkova, V. V. Gridchin, A. M. Popov, and O. V. Tikhonova, Zh. Eksp. Teor. Fiz. 129(1), 48 (2006) [JETP 102 (1), 40 (2006)].

    Google Scholar 

  17. E. A. Volkova, A. M. Popov, M. A. Tikhonov, and O. V. Tikhonova, Zh. Eksp. Teor. Fiz. 132(3), 596 (2007) [JETP 105 (3), 526 (2007)].

    Google Scholar 

  18. A. V. Andreev, Zh. Eksp. Teor. Fiz. 116(3), 793 (1999) [JETP 89 (3), 421 (1999)].

    Google Scholar 

  19. A. V. Andreev and A. V. Zayakin, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 6, 29 (2004).

  20. A. V. Andreev and O. A. Shoutova, Phys. Lett. A 350, 309 (2006).

    Article  ADS  Google Scholar 

  21. A. V. Andreev, O. A. Shoutova, and V. A. Makarov, Proc. SPIE—Int. Soc. Opt. Eng. 6259, 625901–1 (2006).

    Google Scholar 

  22. A. V. Andreev, O. A. Shoutova, and S. Yu. Stremoukhov, Laser Phys. 17, 496 (2007).

    Article  ADS  Google Scholar 

  23. A. V. Andreev, S. Yu. Stremoukhov, and O. A. Shutova, Teor. Fiz. 9, 36 (2008).

    Google Scholar 

  24. A. V. Andreev, O. A. Shoutova, and S. Yu. Stremoukhov, J. Russ. Laser Res. 29, 203 (2008).

    Article  Google Scholar 

  25. A. V. Andreev, Relativistic Quantum Mechanics: Particles and Mirror Particles (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  26. R. A. Ganeev, Usp. Fiz. Nauk 179(1), 65 (2009) [Phys.—Usp. 52 (1), 55 (2009)].

    Article  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Butterworth-Heinemann, Oxford, 1991).

    Google Scholar 

  28. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, and D. V. Sinitsyn, Pis’ma Zh. Eksp. Teor. Fiz. 90(3), 199 (2009) [JETP Lett. 90 (3), 181 (2009)].

    Google Scholar 

  29. A. D. DiChiara, I. Ghebregziabher, J. M. Waesche, T. Stanev, N. Ekanayake, L. R. Barclay, S. J. Wells, A. Watts, M. Videtto, C. A. Mancuso, and B. C. Walker, Phys. Rev. A: At., Mol., Opt. Phys. 81, 043 417 (2010).URI37218005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Stremoukhov.

Additional information

Original Russian Text © A.V. Andreev, S.Yu. Stremoukhov, O.A. Shutova, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 6, pp. 1060–1075.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, A.V., Stremoukhov, S.Y. & Shutova, O.A. Ionization of a multilevel atom by ultrashort laser pulses. J. Exp. Theor. Phys. 111, 936–948 (2010). https://doi.org/10.1134/S106377611012006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611012006X

Keywords

Navigation