Skip to main content
Log in

Transmission and reflection spectra of a photonic crystal with a Raman defects

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Features of Raman gain of probe radiation in three-level atoms placed in a defect of a one-dimensional photonic crystal in the presence of laser radiation (pump) at an adjacent high-frequency transition have been theoretically investigated. It has been shown that there is a pump intensity range where narrow peaks (resonances) simultaneously appear in the transmission and reflection spectra of the probe field. Beyond this region, the peak in the transmission spectrum is transformed to a narrow dip. The spectral position of these peaks is determined by the Raman resonance and the transmittance and reflectance can be larger than unity at pump intensities from several microwatts per square centimeter to several tens of milliwatts per square centimeter. The nature of narrow peaks is due to a sharp dispersion of a nonlinear refractive index near the Raman resonance; this dispersion is responsible for a strong decrease in the group velocity of probe radiation. The proposed scheme makes it possible to obtain controlled ultranarrow resonances in the transmission and reflection spectra of the photonic crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Shabanov, S. Ya. Vetrov, and A. V. Shabanov, Optics of Real Photonic Crystals: Liquid-Crystal Defects and Inhomogeneities (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  2. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep. 444, 101 (2007).

    Article  ADS  Google Scholar 

  3. J. Bravo-Abad, A. Rodriges, P. Bermei, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, Opt. Express 15, 16161 (2007).

    Article  ADS  Google Scholar 

  4. P. Lalanne, C. Sauvan, and J. P. Hugonin, Laser Photonics Rev. 2, 514 (2008).

    Article  Google Scholar 

  5. K. J. Vahala, Nature (London) 424, 839 (2003).

    Article  ADS  Google Scholar 

  6. S. L. McCall, A. F. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).

    Article  ADS  Google Scholar 

  7. D. W. Vernooy, A. Fugusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A: At., Mol., Opt. Phys. 57(4), R2293 (4 pages) (1998).

    ADS  Google Scholar 

  8. D. Englund, Y. Altug, B. Ellis, and J. Vučković, Laser Photonics Rev. 2, 264 (2008).

    Article  Google Scholar 

  9. X. Yang and C. W. Wong, Opt. Express 15, 4723 (2007).

    ADS  Google Scholar 

  10. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, Opt. Lett. 31, 1235 (2006).

    Article  ADS  Google Scholar 

  11. T. Baba, Nat. Photonics 2, 465 (2008).

    Article  ADS  Google Scholar 

  12. S. V. Spillane, T. J. Kippenbetg, and K. J. Vahala, Nature (London) 415, 621 (2002).

    Article  ADS  Google Scholar 

  13. T. J. Kippenbetg, S. V. Spillane, D. K. Armani, and K. J. Vahala, Opt. Lett. 29, 1224 (2004).

    Article  ADS  Google Scholar 

  14. E. L. Ivchenko, M. A. Kaliteevski, A. V. Kavokin, and A. I. Nesvizhskii, J. Opt. Soc. Am. B 13, 1061 (1996).

    Article  ADS  Google Scholar 

  15. G. Khitrova and H. M. Gibbs, Rev. Mod. Phys. 71, 1591 (1999).

    Article  ADS  Google Scholar 

  16. S. John and V. Florescu, J. Opt. A: Pure Appl. Opt. 3, S101 (2001).

    Article  Google Scholar 

  17. V. G. Arkhipkin, S. A. Myslivets, I. V. Timofeev, A. V. Shabanov, S. Ya. Vetrov, and V. P. Timofeev, in Proceedings of the Eighth International Conference on Laser and Fiber-Optical Networks Modeling (LFNM’2006), Kharkov, Ukraine, June 19–July 1, 2006 (Kharkov, 2006), p. 313.

  18. M. Fleischhauer, A. Immamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  19. M. Soljacic and J. D. Joannopoulos, Nat. Mater. 3, 211 (2004).

    Article  ADS  Google Scholar 

  20. M. Soljacic, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 026602 (2005).

    Article  ADS  Google Scholar 

  21. V. G. Arkhipkin and S. A. Myslivets, Kvantovaya Elektron. (Moscow) 39, 157 (2009) [Quantum Electron. 39, 157 (2009)].

    Article  Google Scholar 

  22. M. G. Payne and L. Deng, Phys. Rev. A: At., Mol., Opt. Phys. 64, 031 802 (2001).

    Google Scholar 

  23. S. Inouye, R. F. Löw, S. Gupta, T. Pfau, A. Görlitz, T. L. Gustavson, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 85, 4225 (2000).

    Article  ADS  Google Scholar 

  24. K. Lee and N. M. Lawandy, Appl. Phys. Lett. 78, 703 (2001).

    Article  ADS  Google Scholar 

  25. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, Opt. Express 13, 6092 (2005).

    Article  ADS  Google Scholar 

  26. S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  27. K. S. Repasky, L. Meng, J. K. Brasseur, J. L. Carlsten, and R. C. Swanson, J. Opt. Soc. Am. B 16, 717 (1999).

    Article  ADS  Google Scholar 

  28. M. Poeiker and P. Kumar, Opt. Lett. 17, 399 (1992).

    Article  ADS  Google Scholar 

  29. D. N. Klyshko, Physical Foundations of Quantum Electronics (Nauka, Moscow, 1986; World Scientific, Singapore, 2010).

    Google Scholar 

  30. A. Yariv, Quantum Electronics (Wiley, New York, 1975; Sovetskoe Radio, Moscow, 1980).

    Google Scholar 

  31. R. W. Boyd, Nonlinear Optics (Academic, London, 1992).

    Google Scholar 

  32. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  33. A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, I. A. Ozheredov, E. V. Petrov, A. P. Shkurinov, P. Masselin, and G. Mouret, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 63, 046609 (2001).

    Article  ADS  Google Scholar 

  34. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart, and Winston, New York, 1977; Vysshaya Shkola, Moscow, 1983).

    Google Scholar 

  35. Y. Shimizu, N. Shiokawa, N. Tamamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, Phys. Rev. Lett. 89, 233001 (2002).

    Article  ADS  Google Scholar 

  36. J. Zhang, G. Hernandez, and Y. Zhu, Opt. Lett. 33, 46 (2008).

    Article  ADS  Google Scholar 

  37. S. Stenholm, Foundations of Laser Spectroscopy (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Arkhipkin.

Additional information

Original Russian Text ©V.G. Arkhipkin, S.A. Myslivets, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 6, pp. 1018–1027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkhipkin, V.G., Myslivets, S.A. Transmission and reflection spectra of a photonic crystal with a Raman defects. J. Exp. Theor. Phys. 111, 898–906 (2010). https://doi.org/10.1134/S1063776110120022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110120022

Keywords

Navigation