Skip to main content
Log in

Theory of Brownian motion in a Jeffreys fluid

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have constructed a kinetic theory of Brownian motion in a rheologically complex medium—a Jeffreys fluid that is characterized by a combination of two viscosity mechanisms: ordinary and delayed. This model is shown to be much better suited for the interpretation of experiments on the microrheology of viscoelastic media than the standard Maxwell model. In particular, no oscillations of the mean-square particle displacement arise in a Jeffreys fluid, which is a nonremovable artifact of the theory of Brownian motion in a Maxwell fluid. The developed approach can to be used also consider the diffusion of particles in other complex fluids whose rheology is described by phenomenological schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. G. Mason, K. Ganesan, J. H. van Zanten, D. Wirtz, and S. C. Kuo, Phys. Rev. Lett. 79, 3282 (1997).

    Article  ADS  Google Scholar 

  2. Z. Cheng and T. G. Mason, Phys. Rev. Lett. 90, 018304 (2003).

    Article  ADS  Google Scholar 

  3. Z. Cheng, T. G. Mason, and P. M. Chaikin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 68, 051404 (2003).

    Article  ADS  Google Scholar 

  4. A. R. Bausch, F. Ziemann, A. A. Boulbitch, K. Jacobson, and E. Sackmann, Biophys. J. 75, 2038 (1998).

    Article  Google Scholar 

  5. C. Wilhelm, J. Browaeys, A. Ponton, and J.-C. Bacri, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 011504 (2003).

    Article  ADS  Google Scholar 

  6. C. Wilhelm, F. Gazeau, and J.-C. Bacri, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 061908 (2003).

    Article  Google Scholar 

  7. J. Frenkel, Kinetic Theory of Liquids (Oxford University Press, Oxford, 1946; Nauka, Moscow, 1976).

    MATH  Google Scholar 

  8. M. Reiner, in Rheology: Theory and Applications, Ed. by F. R. Eirich (Academic, New York, 1956; Inostrannaya Literatura, Moscow, 1962), p. 22.

    Google Scholar 

  9. P. Oswald, Rheophysics: The Deformation and Flow of Matter (Cambridge University Press, Cambridge, 2009).

    Google Scholar 

  10. V. S. Volkov, Zh. Eksp. Teor. Fiz. 98(1), 168 (1990) [Sov. Phys. JETP 71 (1), 93 (1990)].

    Google Scholar 

  11. V. S. Volkov and A. I. Leonov, J. Chem. Phys. 104, 5922 (1996).

    Article  ADS  Google Scholar 

  12. Yu. L. Raikher and V. V. Rusakov, Zh. Eksp. Teor. Fiz. 110(5), 1797 (1996) [JETP 83 (5), 988 (1996)].

    Google Scholar 

  13. J. L. Déjardin, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 58, 2808 (1998).

    Google Scholar 

  14. C. Wilhelm and F. Gazeau, J. Magn. Magn. Mater. 321, 671 (2009).

    Article  ADS  Google Scholar 

  15. J. H. van Zanten and K. P. Rufener, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 62, 5389 (2000).

    Article  Google Scholar 

  16. K. Erglis, V. Ose, A. Zeltins, and A. Cebers, Magnetohydrodynamics 46, 23 (2010).

    Google Scholar 

  17. J. N. Anker and R. Kopelman, Appl. Phys. Lett. 82, 1102 (2003).

    Article  ADS  Google Scholar 

  18. A. Schlachter, M. E. Gruner, M. Spasova, M. Farle, and P. Entel, Phase Transitions 78, 741 (2005).

    Article  Google Scholar 

  19. J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.-C. Bacri, and F. Gazeau, J. Am. Chem. Soc. 129, 2628 (2007).

    Article  Google Scholar 

  20. Yu. L. Klimontovich, Statistical Theory of Open Systems (Yanus, Moscow, 1995; Kluwer, Dordrecht, The Netherlands, 1995).

    MATH  Google Scholar 

  21. Yu. P. Kalmykov, W. T. Coffey, and J. T. Waldron, The Langevin Equation (World Sci., Singapore, 2004).

    MATH  Google Scholar 

  22. C. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and Natural Sciences (Springer, Heidelberg, 1983; Mir, Moscow, 1986).

    MATH  Google Scholar 

  23. F. Cardinaux, L. Cipelletti, F. Scheffold, and P. Schurtenberger, Europhys. Lett. 57, 738 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rusakov.

Additional information

Original Russian Text © Yu.L. Raikher, V.V. Rusakov, 2010, published in Zhurnal Éksperimental’noı i Teoreticheskoı Fiziki, 2010, Vol. 138, No. 5, pp. 998–1005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raikher, Y.L., Rusakov, V.V. Theory of Brownian motion in a Jeffreys fluid. J. Exp. Theor. Phys. 111, 883–889 (2010). https://doi.org/10.1134/S1063776110110191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110110191

Keywords

Navigation