Skip to main content
Log in

Ion drag forces and magnetomechanical effect

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Ion flows (ion drag forces) acting on macroscopic-size particles play a significant role in a plasma containing macroparticles. It is shown that ion drag forces can explain the magnetomechanical effect. The formula is derived for determining the dependence of the moment of the magnetomechanical effect on the type and pressure of the gas, tube radius, current, and magnetic field. This formula is in satisfactory agreement with experimental data for discharges in argon and neon with a relatively low magnetization of electron motion. For a high magnetization, the measured values of the moment of the magnetomechanical effect exceed the calculated values, which can be due to the effect of magnetic field nonuniformity and inhomogeneity of the plasma near the solenoid ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Granovskii and E. I. Urazakov, Zh. Eksp. Teor. Fiz. 38, 1354 (1960) [Sov. Phys. JETP 11, 974 (1960)].

    Google Scholar 

  2. E. I. Urazakov, Zh. Eksp. Teor. Fiz. 44, 41 (1963) [Sov. Phys. JETP 17, 28 (1963)].

    Google Scholar 

  3. V. M. Zakharova, Yu. M. Kagan, and V. I. Perel’, Opt. Spektrosk. 11, 777 (1961).

    Google Scholar 

  4. V. M. Zakharova and Yu. M. Kagan, Opt. Spektrosk. 19, 140 (1965).

    Google Scholar 

  5. V. Yu. Karasev, R. I. Semenov, and M. P. Chaika, in Proceedings of the All-Russia Conference on the Physics of Low-Temperature Plasma (FNTP-98), Petrozavodsk, Russia, June 22–27, 1998, Ed. by A. D. Khakhaev (Petrozavodsk University, Petrozavodsk, 1998), p. 268.

    Google Scholar 

  6. V. Yu. Karasev, M. P. Chaika, A. I. Eikhval’d, and Tsin Shchego, Opt. Spektrosk. 91(1), 34 (2001) [Opt. Spectrosc. 91 (1), 27 (2001)].

    Article  ADS  Google Scholar 

  7. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Usp. Fiz. Nauk 174(5), 495 (2004) [Phys.—Usp. 47 (5), 493 (2004)].

    Article  Google Scholar 

  8. M. S. Barnes, J. H. Keller, J. C. Forster, J. A. O’Neill, and D. K. Coultas, Phys. Rev. Lett. 68, 313 (1992).

    Article  ADS  Google Scholar 

  9. S. A. Khrapak, A. V. Ivlev, G. E. Morfill, and H. M. Thomas, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 66, 046 414 (2002).

    Article  Google Scholar 

  10. V. E. Golant, Usp. Fiz. Nauk 79, 377 (1963) [Sov. Phys.—Usp. 6, 161 (1963)].

    Google Scholar 

  11. U. Konopka, D. Samsonov, A. Ivlev, J. Goree, V. Steinberg, and G. E. Morfill, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 61, 1890 (2000).

    Google Scholar 

  12. N. Sato, G. Uchida, and T. Kaneko, Phys. Plasmas 8, 1786 (2001).

    Article  ADS  Google Scholar 

  13. V. Yu. Karasev and A. I. Eikhval’d, Opt. Spektrosk. 98(4), 621 (2005) [Opt. Spectrosc. 98 (4), 569 (2005)].

    Google Scholar 

  14. E. S. Dzlieva, V. Yu. Karasev, and A. I. Eikhval’d, Opt. Spektrosk. 100(3), 503 (2006) [Opt. Spectrosc. 100 (3), 456 (2006)].

    Article  Google Scholar 

  15. V. Yu. Karasev, E. S. Dzlieva, and A. I. Eikhval’d, Opt. Spektrosk. 101(3), 521 (2006) [Opt. Spectrosc. 101 (3), 493 (2006)].

    Article  Google Scholar 

  16. V. Yu. Karasev, E. S. Dzllieva, Yu. Ivanov, and A. I. Eikhvald, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 066 403 (2006).

    Article  Google Scholar 

  17. M. M. Vasil’ev, L. G. D’yachkov, O. F. Antipov, O. F. Petrov, and V. E. Fortov, Pis’ma Zh. Eksp. Teor. Fiz. 86(6), 414 (2007) [JETP Lett. 86 (6), 358 (2007)].

    Google Scholar 

  18. A. V. Nedospasov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 79, 036 401 (2009).

    Article  Google Scholar 

  19. A. V. Filippov, A. O. Pal, A. N. Ryabinkin, et al., in Proceedings of the Second International Conference on the Physics of Dusty and Burning Plasmas, Odessa, Ukraine, August 26–30, 2007 (Odessa, 2007), p. 55.

  20. B. B. Kadomtsev and A. V. Nedospasov, J. Nucl. Energy, Part C 1, 230 (1960).

    Article  ADS  Google Scholar 

  21. A. Von Engel, Ionized Gases (Oxford University Press, Oxford, 1955; Fizmatgiz, Moscow, 1959).

    MATH  Google Scholar 

  22. B. N. Klyarfel’d, Zh. Tekh. Fiz. 4, 44 (1937).

    Google Scholar 

  23. V. L. Granovskii and E. I. Urazakov, Zh. Eksp. Teor. Fiz. 45, 1285 (1963).

    Google Scholar 

  24. L. Tonks, Phys. Rev. 56, 360 (1939).

    Article  MATH  ADS  Google Scholar 

  25. E. M. Reikhrudel’ and G. V. Spivak, Dokl. Akad. Nauk SSSR 28, 610 (1940).

    Google Scholar 

  26. L. L. Artsimovich and A. V. Nedospasov, Dokl. Akad. Nauk SSSR 145, 1022 (1962) [Sov. Phys. Dokl. 7, 717 (1962)].

    Google Scholar 

  27. A. V. Nedospasov and S. S. Sobolev, Zh. Tekh. Fiz. 36(10), 1758 (1966) [Sov. Phys. Tech. Phys. 11 (10), 1309 (1960)].

    Google Scholar 

  28. V. L. Vdovin and A. V. Nedospasov, Zh. Tekh. Fiz. 32, 817 (1962) [Sov. Phys. Tech. Phys. 7, 598 (1962)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nedospasov.

Additional information

Original Russian Text © A.V. Nedospasov, N.V. Nenova, 2010, published in Zhurnal Éksperimental’noı i Teoreticheskoı Fiziki, 2010, Vol. 138, No. 5, pp. 991–997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedospasov, A.V., Nenova, N.V. Ion drag forces and magnetomechanical effect. J. Exp. Theor. Phys. 111, 877–882 (2010). https://doi.org/10.1134/S106377611011018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611011018X

Keywords

Navigation