Skip to main content
Log in

“Magic numbers” in the melting of a cluster of point charges on a sphere

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The thermodynamic properties of a cluster of point Coulomb charges on a sphere have been analyzed using the Monte Carlo method for the number of charges 20 ≤ N ≤ 90. The ground state of the system of charges is described in the model of a closed quasi-two-dimensional triangular lattice with topological defects. We have determined the dependence of the Lindeman parameter δL of this system on N and on the dimensionless parameter \( \tilde T \), which is proportional to the temperature T and to the radius R of the cluster: \( \tilde T = {{k_B T\varepsilon R} \mathord{\left/ {\vphantom {{k_B T\varepsilon R} {e^2 }}} \right. \kern-\nulldelimiterspace} {e^2 }} \), where ∈ is the dielectric constant of the medium and e is the charge of a particle. The “magic numbers,” i.e., the N values, for which the melting point of the closed triangular lattice of charges is much higher than those for neighboring N values, have been found. The evolution of the lattice-melting mechanisms with an increase in the number of charges N in a mesoscopic cluster has been analyzed. For N ≤ 32, the melting of the lattice does not involve dislocations (nontopological melting); this behavior of the mesoscopic system of charges on the sphere differs from the behavior of the extended planar two-dimensional system. At N ≳ 50, melting is accompanied by the formation of dislocations. The mechanism of dislocation-free non-topological melting of a closed lattice, which occurs at small N values and is associated with the cooperative rotational motion of “rings” of particles, has been analyzed. The model has various implementations in the mesoscopic region; in particular, it describes the system of electrons over the liquid-helium cluster, the liquid-helium cluster with incorporated charged particles, a multielectron bubble in liquid helium, a charged quantum dot, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Heinzel, Mesoscopic Electronics in Solid State Nanostructures (Wiley, New York, 2007).

    Google Scholar 

  2. M. Kastner, Phys. Today 46, 24 (1993).

    Article  ADS  Google Scholar 

  3. D. Kielpinski, C. Monroe, and D. J. Wineland, Nature (London) 417, 709 (2002).

    Article  ADS  Google Scholar 

  4. J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, Nat. Phys. 4, 463 (2008).

    Article  Google Scholar 

  5. J. J. Thomson, Philos. Mag. 7, 237 (1904).

    MathSciNet  Google Scholar 

  6. Yu. E. Lozovik, Usp. Fiz. Nauk 153(2), 356 (1987) [Sov. Phys.—Usp. 30 (10), 912 (1987)].

    Article  Google Scholar 

  7. H. A. Munera, Nature (London) 320, 597 (1986).

    Article  ADS  Google Scholar 

  8. L. T. Wille, Nature (London) 324, 46 (1986).

    Article  ADS  Google Scholar 

  9. Yu. E. Lozovik and V. A. Mandelshtam, Phys. Lett. A 145, 269 (1990); Phys. Lett. A 165, 469 (1992).

    Article  ADS  Google Scholar 

  10. T. Erber and G. M. Hockney, J. Phys. A: Math. Gen. 24, L1369 (1991).

    Article  ADS  Google Scholar 

  11. J. R. Edmundson, Acta. Crystallogr., Sect. A: Found. Crystallogr. 49, 648 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  12. E. L. Altshuler, T. J. Williams, E. R. Ratner, F. Dowla, and F. Wooten, Phys. Rev. Lett. 72, 2671 (1994).

    Article  ADS  Google Scholar 

  13. A. M. Livshits and Yu. E. Lozovik, Chem. Phys. Lett. 314, 577 (1999).

    Article  ADS  Google Scholar 

  14. F. Diedrich, E. Peik, J. M. Chen, W. Quint, and H. Walther, Phys. Rev. Lett. 59, 2931 (1987).

    Article  ADS  Google Scholar 

  15. D. J. Wineland, J. C. Bergquist, Wayne M. Itano, J. J. Bollinger, and C. H. Manney, Phys. Rev. Lett. 59, 2935 (1987).

    Article  ADS  Google Scholar 

  16. A. M. Livshits and Yu. E. Lozovik, Kristallografiya 47(1), 7 (2002) [Crystallogr. Rep. 47 (1), 1 (2002)].

    Google Scholar 

  17. V. A. Likhachev and R. Yu. Khaırov, Introduction to the Theory of Disclinations (Leningrad State University, Leningrad, 1975) [in Russian].

    Google Scholar 

  18. V. L. Berezinskiı, Zh. Éksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493 (1970)].

    Google Scholar 

  19. J. M. Kosterlitz and D. J. Thouless, J. Phys.: Condens. Matter 86, 1181 (1973).

    Google Scholar 

  20. B. I. Halperin and D. R. Nelson, Phys. Rev. B: Condens. Matter 19, 2457 (1979).

    Article  ADS  Google Scholar 

  21. A. P. Young, Phys. Rev. B: Condens. Matter 19, 1855 (1979).

    Article  ADS  Google Scholar 

  22. F. R. N. Nabarro, Theory of Crystal Dislocations (Clarendon, Oxford, 1967), p. 821.

    Google Scholar 

  23. V. N. Ryzhov and E. E. Tareeva, Zh. Éksp. Teor. Fiz. 108(6), 2044 (1995) [JETP 81 (6), 1115 (1995)].

    Google Scholar 

  24. L. M. Pomirchi, V. N. Ryzhov, and E. E. Tareeva, Teor. Mat. Fiz. 130(1), 119 (2002) [Theor. Math. Phys. 130 (1), 101 (2002)].

    Google Scholar 

  25. S. W. Koch and F. M. Abraham, Phys. Rev. B: Condens. Matter 27, 2964 (1983).

    Article  ADS  Google Scholar 

  26. S. T. Chui, Phys. Rev. B: Condens. Matter 28, 933 (1983).

    Google Scholar 

  27. V. M. Bedanov, G. V. Gadiyak, and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 88(5), 1622 (1985) [Sov. Phys. JETP 61 (5), 967 (1985)].

    Google Scholar 

  28. A. M. Livshits and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 132(3), 647 (2007) [JETP 105 (3), 571 (2007)].

    Google Scholar 

  29. V. B. Shikin and Yu. P. Monarkha, Two-Dimensional Charged Systems in Helium (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  30. A. G. Khrapak, Pis’ma Zh. Éksp. Teor. Fiz. 86(4), 282 (2007) [JETP Lett. 86 (4), 252 (2007)].

    Google Scholar 

  31. G. N. Makarov, Usp. Fiz. Nauk 178(4), 337 (2008) [Phys.—Usp. 51 (4), 319 (2008)].

    Article  Google Scholar 

  32. S. Grebenev, J. P. Toennies, and A. F. Vilesov, Science (Washington) 279, 2083 (1998).

    Article  ADS  Google Scholar 

  33. B. S. Dumesh, A. V. Potapov, and L. A. Surin, Usp. Fiz. Nauk 179(3), 317 (2009) [Phys.—Usp. 52 (3), 294 (2009)].

    Article  Google Scholar 

  34. A. A. Samarskiı and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  35. A. M. Livshits and Yu. E. Lozovik, Fiz. Tverd. Tela (St. Petersburg) 45(7), 1339 (2003) [Phys. Solid State 45 (7), 1403 (2003)].

    Google Scholar 

  36. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  37. Yu. E. Lozovik and E. A. Rakoch, Phys. Rev. B: Condens. Matter 57, 1214 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Livshits.

Additional information

Original Russian Text © A.M. Livshits, Yu.E. Lozovik, 2010, published in Zhurnal Éksperimental’noı i Teoreticheskoı Fiziki, 2010, Vol. 138, No. 5, pp. 955–969.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livshits, A.M., Lozovik, Y.E. “Magic numbers” in the melting of a cluster of point charges on a sphere. J. Exp. Theor. Phys. 111, 844–856 (2010). https://doi.org/10.1134/S1063776110110154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110110154

Keywords

Navigation