Skip to main content
Log in

Luminescence and photosensitization properties of ensembles of silicon nanocrystals in terms of an exciton migration model

  • ELectronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The relaxation processes that occur in ensembles of coupled silicon nanocrystals are described by a quantitative model that takes into account the energy transfer between them during exciton migration. This model is used to study the formation of singlet oxygen during the photoexcitation of silicon nanocrystals in porous silicon layers under various external conditions. It is experimentally found that, upon fine milling of as-deposited porous silicon films, the photoluminescence decay time increases despite an increase in the concentration of point defects. The photosensitized activity of ensembles of silicon nanocrystals degrades monotonically during their photostimulated oxidation. These experimental results agree completely with the conclusions of the model and are explained by a decrease in the number of exciton migration ways between nanocrystals when the granule size of a porous silicon powder decreases and by an increase in the efficiency of nonradiative recombination during the photostimulated oxidation of the nanocrystals. Our data indicate that nanocrystalline silicon is a promising material for the methods of nontoxic photodynamic therapy of oncological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep. 38, 1 (2000).

    Article  Google Scholar 

  2. W. Theiβ, Thin Solid Films 276, 7 (1996).

    Article  ADS  Google Scholar 

  3. D. Kovalev, E. Gross, N. Künzner, F. Koch, V. Yu. Timoshenko, and M. Fujii, Phys. Rev. Lett. 89, 137 401 (2002).

    Article  Google Scholar 

  4. J. G. Moser, Photodynamic Tumor Therapy: The 2nd and 3rd Generation Photosensitizers (Harwood Academic, Amsterdam, 1998).

    Google Scholar 

  5. N. I. Krinsky, in Singlet Oxygen, Ed. by H. H. Wasserman and R. W. Murray (Academic, New York, 1979), Vol. 40, p. 597.

    Google Scholar 

  6. P. Maly, F. Trojanek, J. Kudma, A. Hospodkova, S. Banas, V. Kohlova, J. Valenta, and I. Pelant, Phys. Rev. B: Condens. Matter 54, 7929 (1996).

    Article  ADS  Google Scholar 

  7. L. Pavesi and M. Ceschini, Phys. Rev. B: Condens. Matter 48, 17625 (1993).

    Article  ADS  Google Scholar 

  8. X. Chen, B. Henderson, and K. P. O’Donnell, Appl. Phys. Lett. 60, 2672 (1992).

    Article  ADS  Google Scholar 

  9. P. J. Ventura, M. C. do Carmo, and K. P. O’Donnell, J. Appl. Phys. 77, 323 (1995).

    Article  ADS  Google Scholar 

  10. I. Mihalcescu, J. C. Vial, and R. Romestain, J. Appl. Phys. 80, 2404 (1996).

    Article  ADS  Google Scholar 

  11. S. Sawada, N. Hamada, and N. Ookubo, Phys. Rev. B: Condens. Matter 49, 5236 (1994).

    Article  ADS  Google Scholar 

  12. Y. Kanemitsu, Phys. Rev. B: Condens. Matter 53, 13513 (1996).

    ADS  Google Scholar 

  13. M. Pophristic, F. H. Lang, C. Tran, I. T. Ferguson, and R. F. Karlicek, Appl. Phys. Lett. 73, 3550 (1998).

    Article  ADS  Google Scholar 

  14. S. Lebib, H. J. von Bardeleben, J. Cernogora, J. L. Fave, and J. Roussel, J. Lumin. 80, 153 (1999).

    Article  Google Scholar 

  15. X. Chen, B. Henderson, and K. P. O’Donnell, Appl. Phys. Lett. 60, 2672 (1992).

    Article  ADS  Google Scholar 

  16. M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek, Jr., J. Appl. Phys. 86, 1114 (1999).

    Article  ADS  Google Scholar 

  17. Y. Kanemitsu, Phys. Rev. B: Condens. Matter 53, 13515 (1996).

    Article  ADS  Google Scholar 

  18. J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, J. Appl. Phys. 86, 6128 (1999).

    Article  ADS  Google Scholar 

  19. J. Linnros, A. Galeckas, N. Lalic, and V. Grivickas, Thin Solid Films 297, 167 (1997).

    Article  ADS  Google Scholar 

  20. I. N. Germanenko, S. Li, and S. El-Shall, J. Phys. Chem. B 105, 59 (2001).

    Article  Google Scholar 

  21. F. Iacona, G. Franzo, V. Viciguerra, A. Irrera, and F. Priolo, Opt. Mater. 17, 51 (2001).

    Article  ADS  Google Scholar 

  22. V. Viciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, J. Appl. Phys. 87, 8165 (2000).

    Article  ADS  Google Scholar 

  23. R. Chen, J. Lumin. 102–103, 510 (2003).

    Article  Google Scholar 

  24. P. Goudeau, A. Naudon, G. Bomchil, and R. Herino, J. Appl. Phys. 66, 625 (1989).

    Article  ADS  Google Scholar 

  25. M. Wesolowski, Phys. Rev. B: Condens. Matter 66, 205207–1 (2002).

    Article  ADS  Google Scholar 

  26. T. Nychyporuk, V. Lysenko, and D. Barbier, Phys. Rev. B: Condens. Matter 71, 115 402–1 (2005).

    Google Scholar 

  27. L. Moretti, L. De Stefano, and I. Rendina, J. Appl. Phys. 101, 024 309–1 (2007).

    Article  Google Scholar 

  28. F. Zhou and Y. M. Huang, Appl. Surf. Sci. 253, 4507 (2006).

    Article  ADS  Google Scholar 

  29. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, Pure Appl. Chem. 66, 1739 (1994).

    Article  Google Scholar 

  30. A. G. Cullis and L. T. Canham, Nature (London) 353, 335 (1991).

    Article  ADS  Google Scholar 

  31. J. P. Proot, C. Delerue, and G. Allan, Appl. Phys. Lett. 61, 1948 (1992).

    Article  ADS  Google Scholar 

  32. C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B: Condens. Matter 48, 11 024 (1993).

    Google Scholar 

  33. A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance with Application to Chemistry and Chemical Physics (Harper and Row, New York, 1967; Mir, Moscow, 1970).

    Google Scholar 

  34. V. I. Arnol’d, Ordinary Differential Equations (Nauka, Moscow, 1966; Springer, New York, 1992).

    Google Scholar 

  35. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Status Solidi B 215, 871 (1999).

    Article  ADS  Google Scholar 

  36. E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, V. Yu. Timoshenko, and M. Fujii, Phys. Rev. B: Condens. Matter 68, 115405 (2003).

    Article  ADS  Google Scholar 

  37. E. A. Konstantinova, V. A. Demin, V. Yu. Timoshenko, and P. K. Kashkarov, Pis’ma Zh. Éksp. Teor. Fiz. 85(1), 65 (2007) [JETP Lett. 85 (1), 59 (2007)].

    Google Scholar 

  38. Y. Nishi, J. Appl. Phys. Jpn. 10, 52 (1971).

    Article  ADS  Google Scholar 

  39. R. L. Smith and S. D. Collins, J. Appl. Phys. 71, R1 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Konstantinova.

Additional information

Original Russian Text © V.A. Demin, E.A. Konstantinova, P.K. Kashkarov, 2010, published in Zhurnal éksperimental’noı i Teoreticheskoı Fiziki, 2010, Vol. 138, No. 5, pp. 939–954.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demin, V.A., Konstantinova, E.A. & Kashkarov, P.K. Luminescence and photosensitization properties of ensembles of silicon nanocrystals in terms of an exciton migration model. J. Exp. Theor. Phys. 111, 830–843 (2010). https://doi.org/10.1134/S1063776110110142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110110142

Keywords

Navigation