Skip to main content
Log in

Generation of direct current in a semiconductor superlattice under the action of a bichromatic field as a parametric effect

  • ELectronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Generation of direct current in a semiconductor superlattice under the action of an ac bichromatic field is considered in the most general case of an arbitrary ratio of the frequencies of the fields being mixed. It is shown that this effect is of parametric origin associated with oscillations of the electron effective mass in the miniband of the superlattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. K. Pozhela and H. J. Karlin, Proc. IEEE 53, 1788 (1965).

    Article  Google Scholar 

  2. W. Schneider and K. Seeger, Appl. Phys. Lett. 8, 133 (1966).

    Article  ADS  Google Scholar 

  3. Yu. A. Romanov, Opt. Spektrosk. 33, 917 (1972).

    Google Scholar 

  4. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

    Article  Google Scholar 

  5. A. Wacker, Phys. Rep. 357, 1 (2002).

    Article  MATH  ADS  Google Scholar 

  6. P. Reimann, Phys. Rep. 361, 57 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. D. Dragoman and M. Dragoman, Prog. Quantum Electron. 28, 1 (2004).

    Article  ADS  Google Scholar 

  8. B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).

    Article  ADS  Google Scholar 

  9. M. Tonouchi, Nat. Photonics 1, 97 (2007).

    Article  ADS  Google Scholar 

  10. V. V. Pavlovich, Fiz. Tverd. Tela (Leningrad) 19(1), 97 (1977) [Sov. Phys. Solid State 19 (1), 54 (1977)].

    Google Scholar 

  11. Yu. A. Romanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 23, 617 (1980).

    Google Scholar 

  12. Yu. A. Romanov and Yu. Yu. Romanova, Zh. Éksp. Teor. Fiz. 118(5), 1193 (2000) [JETP 91 (5), 1033 (2000)].

    Google Scholar 

  13. T. Hyart, N. V. Alexeeva, A. Leppanen, and K. N. Alekseev, Appl. Phys. Lett. 89, 132 105 (2006).

    Article  Google Scholar 

  14. T. Hyart, A. V. Shorokhov, and K. N. Alekseev, Phys. Rev. Lett. 98, 220 404 (2007).

    Article  Google Scholar 

  15. K. N. Alekseev, M. V. Gorkunov, N. V. Demarina, T. Hyart, N. V. Alexeeva, and A. V. Shorokhov, Europhys. Lett. 73, 934 (2006).

    Article  ADS  Google Scholar 

  16. Yu. A. Romanov, J. Yu. Romanova, and L. G. Mourokh, J. Appl. Phys. 99, 013 707 (2006).

    Article  Google Scholar 

  17. A. V. Shorokhov and K. N. Alekseev, Physica E (Amsterdam) 33, 284 (2006).

    ADS  Google Scholar 

  18. A. V. Shorokhov and K. N. Alekseev, Zh. Éksp. Teor. Fiz. 132(1), 223 (2007) [JETP 105 (1), 198 (2007)].

    Google Scholar 

  19. T. Hyart and K. N. Alekseev, Int. J. Mod. Phys. B 23, 4403 (2009).

    Article  MATH  ADS  Google Scholar 

  20. T. Hyart, N. V. Alexeeva, J. Mattas, and K. N. Alekseev, Microelectron. J. 40, 719 (2009).

    Article  Google Scholar 

  21. T. Hyart, N. V. Alexeeva, J. Mattas, and K. N. Alekseev, Phys. Rev. Lett. 102, 140 405 (2009).

    Article  Google Scholar 

  22. T. Hyart, K. N. Alekseev, and E. V. Thuneberg, Phys. Rev. B: Condens. Matter 77, 165 330 (2008).

    Google Scholar 

  23. S. Mensa, G. M. Shmelev, and É. M. épshteın, Izv. Vyssh. Uchebn. Zaved., Fiz. 6, 112 (1988).

    Google Scholar 

  24. K. Seeger, Appl. Phys. Lett. 76, 82 (2000).

    Article  ADS  Google Scholar 

  25. K. N. Alekseev, M. V. Erementchouk, and F. V. Kusmartsev, Europhys. Lett. 47, 595 (1999).

    Article  ADS  Google Scholar 

  26. A. A. Ignatov and V. I. Shashkin, Zh. Éksp. Teor. Fiz. 93(3), 935 (1987) [Sov. Phys. JETP 66 (3), 526 (1987)].

    Google Scholar 

  27. A. V. Shorokhov and K. N. Alekseev, Int. J. Mod. Phys. B 23, 4448 (2009).

    Article  MATH  ADS  Google Scholar 

  28. A. A. Ignatov, E. P. Dodin, and V. I. Shashkin, Mod. Phys. Lett. B 5, 1087 (1991).

    Article  ADS  Google Scholar 

  29. R. Ferreira, T. Unuma, K. Hirakawa, and G. Bastard, Appl. Phys. Express 2, 062 101 (2009).

    Article  Google Scholar 

  30. T. Unuma, Y. Ino, M. Kuwata-Gonokami, G. Bastard, and K. Hirakawa, Phys. Rev. B: Condens. Matter 81, 125 329 (2010).

    Google Scholar 

  31. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ed. by M. Abramowitz and I. Stegun (Dover, New York, 1965; Nauka, Moscow, 1979).

    Google Scholar 

  32. T. Bauer, J. Kolb, A. B. Hummel, and H. G. Roskos, Phys. Rev. Lett. 88, 086 801 (2002).

    Article  Google Scholar 

  33. Y. A. Kosevich, A. B. Hummel, H. G. Roskos, and K. Köhler, Phys. Rev. Lett. 96, 137 403 (2006).

    Article  Google Scholar 

  34. N. Sekine and K. Hirakawa, Phys. Rev. Lett. 94, 057408 (2005).

    Article  ADS  Google Scholar 

  35. C. Hayashi, Nonlinear Oscillations in Physical Systems (McGraw-Hill, New York, 1964; Mir, Moscow, 1968).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shorokhov.

Additional information

Original Russian Text © A.V. Shorokhov, N.N. Khvastunov, T. Hyart, K.N. Alekseev, 2010, published in Zhurnal Éksperimental’noı i Teoreticheskoı Fiziki, 2010, Vol. 138, No. 5, pp. 930–938.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shorokhov, A.V., Khvastunov, N.N., Hyart, T. et al. Generation of direct current in a semiconductor superlattice under the action of a bichromatic field as a parametric effect. J. Exp. Theor. Phys. 111, 822–829 (2010). https://doi.org/10.1134/S1063776110110130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110110130

Keywords

Navigation