Skip to main content
Log in

The problem of the structure (state of helium) in small He N -CO clusters

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A second-order perturbation theory, developed for calculating the energy levels of the He-CO binary complex, is applied to small He N -CO clusters with N = 2−4, the helium atoms being considered as a single bound object. The interaction potential between the CO molecule and HeN is represented as a linear expansion in Legendre polynomials, in which the free rotation limit is chosen as the zero approximation and the angular dependence of the interaction is considered as a small perturbation. By fitting calculated rotational transitions to experimental values it was possible to determine the optimal parameters of the potential and to achieve good agreement (to within less than 1%) between calculated and experimental energy levels. As a result, the shape of the angular anisotropy of the interaction potential is obtained for various clusters. It turns out that the minimum of the potential energy is smoothly shifted from an angle between the axes of the CO molecule and the cluster of θ = 100° in He-CO to θ = 180° (the oxygen end) in He3-CO and He4-CO clusters. Under the assumption that the distribution of helium atoms with respect to the cluster axis is cylindrically symmetric, the structure of the cluster can be represented as a pyramid with the CO molecule at the vertex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Toennies and A. F. Vilesov, Angew. Chem., Int. Ed. 43, 2622 (2004).

    Article  Google Scholar 

  2. B. S. Dumesh and L. A. Surin, Usp. Fiz. Nauk 176(11), 1137 (2006) [Phys.-Usp. 49 (11), 1113 (2006)].

    Article  Google Scholar 

  3. A. R. W. McKellar, Y. Xu, and W. Jäger, J. Phys. Chem. A 111, 7329 (2007).

    Article  Google Scholar 

  4. A. R. W. McKellar, J. Chem. Phys. 128, 044308 (2008).

    Article  ADS  Google Scholar 

  5. Y. Xu, N. Blinov, W. Jäger, and P.-N. Roy, J. Chem. Phys. 124, 081 101 (2006).

    Google Scholar 

  6. A. R. W. McKellar, J. Chem. Phys. 127, 044315 (2007).

    Article  ADS  Google Scholar 

  7. J. Tang and A. R. W. McKellar, J. Chem. Phys. 119, 754 (2003).

    Article  ADS  Google Scholar 

  8. A. R. W. McKellar, J. Chem. Phys. 125, 164328 (2006).

    Article  ADS  Google Scholar 

  9. L. A. Surin, A. V. Potapov, B. S. Dumesh, S. Schlemmer, Y. Xu, P. L. Raston, and W. Jäger, Phys. Rev. Lett. 101, 233401 (2008).

    Article  ADS  Google Scholar 

  10. W. Topic, W. Jäger, N. Blinov, P.-N. Roy, M. Botti, and S. Moroni, J. Chem. Phys. 125, 144 310 (2006).

    Article  Google Scholar 

  11. É. L. Andronikashvili, Zh. Éksp. Teor. Fiz. 16, 780 (1946); Zh. Éksp. Teor. Fiz. 18, 424 (1948).

    Google Scholar 

  12. J. Tang, A. R. W. McKellar, F. Mezzacapo, and S. Moroni, Phys. Rev. Lett. 92, 145 503 (2004).

    Google Scholar 

  13. S. Moroni, A. Sarsa, S. Fantoni, K. E. Schmidt, and S. Baroni, Phys. Rev Lett. 90, 143 401 (2003).

    Article  Google Scholar 

  14. F. Paesani and K. B. Whaley, J. Chem. Phys. 121, 5293 (2004).

    Article  ADS  Google Scholar 

  15. F. Paesani and K. B. Whaley, J. Chem. Phys. 121, 4180 (2004).

    Article  ADS  Google Scholar 

  16. S. Moroni, N. Blinov, and P.-N. Roy, J. Chem. Phys. 121, 3577 (2004).

    Article  ADS  Google Scholar 

  17. P. L. Raston, Y. Xu, W. Jäger, et al., Phys. Chem. Chem. Phys. 12, 8260 (2010).

    Article  Google Scholar 

  18. C. E. Chuaqui, R. J. Le Roy, and A. R. W. McKellar, J. Chem. Phys. 101, 39 (1994).

    Article  ADS  Google Scholar 

  19. L. A. Surin, B. S. Dumesh, F. Lewen, D. A. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, Rev. Sci. Instrum. 72, 2535 (2001).

    Article  ADS  Google Scholar 

  20. L. A. Surin, D. A. Roth, I. Pak, B. S. Dumesh, F. Lewen, and G. Winnewisser, J. Chem. Phys. 112, 4064 (2000); J. Chem. Phys. 112, 9190(E) (2000).

    Article  ADS  Google Scholar 

  21. A. V. Potapov, V. A. Panfilov, L. A. Surin, and B. S. Dumesh, Opt. Spektrosk. 106(2), 215 (2009) [Opt. Spectrosc. 106 (2), 183 (2009)].

    Article  Google Scholar 

  22. A. R. W. McKellar, Yu. Xu, W. Jäger, and C. Bissonnette, J. Chem. Phys. 110, 10 766 (1999).

    Google Scholar 

  23. P. Cazzato, S. Paolini, S. Moroni, and S. Baroni, J. Chem. Phys. 120, 9071 (2004).

    Article  ADS  Google Scholar 

  24. X.-G. Wang, T. Carrington, Jr., and A. R. W. McKellar, J. Phys. Chem. A 113, 13331 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Potapov.

Additional information

Original Russian Text © A.V. Potapov, V.A. Panfilov, L.A. Surin, B.S. Dumesh, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 5, pp. 874–880.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potapov, A.V., Panfilov, V.A., Surin, L.A. et al. The problem of the structure (state of helium) in small He N -CO clusters. J. Exp. Theor. Phys. 111, 770–775 (2010). https://doi.org/10.1134/S1063776110110087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110110087

Keywords

Navigation