Skip to main content
Log in

Liquid-glass transition as the freezing of characteristic acoustic frequencies

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Half-quantum interpretation is proposed for the liquid-glass transition as the freezing of characteristic acoustic frequencies (degrees of freedom) that are related to the molecular mobility of delocalized excited kinetic units, namely, linear quantum oscillators. There exists a correlation between the energy quantum of an elementary excitation (atom delocalization energy) and the glass transition temperature, which is proportional to the characteristic Einstein temperature. By analogy with the Einstein theory of the heat capacity of solids, the temperature range of the concentration of excited atoms in an amorphous medium is divided into the following two regions: a high-temperature region with a linear temperature dependence of this concentration and a low-temperature region, where the concentration of excited atoms decreases exponentially to the limiting minimum value (about 3%). At this value, the viscosity increases to a critical value (about 1012 Pa s), which corresponds to the glass transition temperature, i.e., the temperature of freezing the mobility of excited kinetic units. The temperature dependence of the free activation energy of viscous flow in the glass transition range is specified by the temperature dependence of the relative number of excited atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Ojovan, Adv. Condens. Matter Phys. 2008, Article ID 817829 (2008).

  2. Al. Al. Berlin, L. Rotenburg, and R. Baserst, Vysokomol. Soedin., Ser. A 35, 857 (1993).

    Google Scholar 

  3. D. S. Sanditov and G. M. Bartenev, Physical Properties of Disordered Structures (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  4. V. G. Rostiashvili, V. I. Irzhak, and B. A. Rozenberg, Vitrification of Polymers (Khimiya, Leningrad, 1987) [in Russian].

    Google Scholar 

  5. W. Götze, in Liquids, Freezing, and Glass Transition, Ed. by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, The Netherlands, 1991; Nauka, Moscow, 1992).

    Google Scholar 

  6. J. H. Gibbs and E. A. Di Marzio, J. Chem. Phys. 28, 373 (1958).

    Article  ADS  Google Scholar 

  7. M. I. Ozhovan, Zh. Éksp. Teor. Fiz. 130(5), 944 (2006) [JETP 103 (5), 819 (2006)].

    Google Scholar 

  8. H. Tanaka, J. Non-Cryst. Solids 351, 3371 (2005).

    Article  ADS  Google Scholar 

  9. A. Yu. Pryadil’shchikov, A. T. Kosilov, A. V. Evteev, and E. V. Levchenko, Zh. Éksp. Teor. Fiz. 132(6), 1352 (2007) [JETP 105 (6), 1184 (2007)].

    Google Scholar 

  10. C. A. Angel, K. L. Ngai, G. B. Mckenna, P. E. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113 (2000).

    Article  ADS  Google Scholar 

  11. K. L. Ngai and S. Capaccioli, J. Am. Ceram. Soc. 91, 709 (2008).

    Article  Google Scholar 

  12. J. C. Dure, Rev. Mod. Phys. 78, 953 (2006).

    Article  ADS  Google Scholar 

  13. J. Zarzycki, Glasses and the Vitreous State (Cambridge University Press, New York, 1982).

    Google Scholar 

  14. G. S. Grest and M. H. Cohen, Adv. Chem. Phys. 48, 455 (1981).

    Article  Google Scholar 

  15. M. I. Klinger, Usp. Fiz. Nauk 152(4), 623 (1987) [Sov. Phys.—Usp. 30 (8), 699 (1987)].

    Article  Google Scholar 

  16. I. V. Razumovskaya and G. M. Bartenev, in The Vitreous State: A Collection of Works (Nauka, Leningrad, 1971), p. 34 [in Russian].

    Google Scholar 

  17. D. S. Sanditov, Zh. Éksp. Teor. Fiz. 135(1), 108 (2009) [JETP 108 (1), 98 (2009)].

    Google Scholar 

  18. S. V. Nemilov, Fiz. Khim. Stekla 6, 257 (1980).

    Google Scholar 

  19. I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans and Green, London, 1954; Nauka, Novosibirsk, 1966).

    Google Scholar 

  20. S. V. Nemilov, Thermodynamic and Kinetic Aspects of the Vitreous State, (CRC Press, Boca Raton, Florida, United States, 1995).

    Google Scholar 

  21. S. V. Nemilov, Fiz. Khim. Stekla 4, 662 (1978).

    Google Scholar 

  22. R. L. Myuller, in The Vitreous State: A Collection of Works (Academy of Sciences of the Soviet Union, Moscow, 1960), p. 61 [in Russian].

    Google Scholar 

  23. R. L. Myuller, Zh. Prikl. Khim. (Leningrad) 28, 1077 (1955).

    Google Scholar 

  24. V. N. Filipovich, Fiz. Khim. Stekla 1, 256 (1975).

    Google Scholar 

  25. R. H. Doremus, Am. Ceram. Soc. Bull. 82, 59 (2003).

    Google Scholar 

  26. M. I. Ojovan, Pis’ma Zh. Éksp. Teor. Fiz. 79(2), 97 (2004) [JETP Lett. 79 (2), 85 (2004)].

    Google Scholar 

  27. D. S. Sanditov, Zh. Éksp. Teor. Fiz. 137(4), 767 (2010) [JETP 110 (4), 675 (2010)].

    Google Scholar 

  28. Ya. I. Frenkel’, in Proceedings of the Conference on Viscosity of Liquids and Colloidal Solutions, Institute of Mechanical Engineering, Moscow, Soviet Union, 1941 (Academy of Sciences of the Soviet Union, Moscow, 1944), Vol. 2, p. 24.

    Google Scholar 

  29. P. B. Macedo and T. A. Litovitz, J. Chem. Phys. 42, 245 (1965).

    Article  ADS  Google Scholar 

  30. D. S. Sanditov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 17 (1971).

    Google Scholar 

  31. SciGlass: Glass Property Database (Version 6.6) (Institute of Theoretical Chemistry, Shrewsbury, Massachusetts, United States, 2006).

  32. D. S. Sanditov and A. A. Mashanov, Fiz. Khim. Stekla 36(1), 55 (2010) [Glass. Phys. Chem. 36 (1), 41 (2010)].

    Google Scholar 

  33. H. W. Leideeker, J. H. Simmons, T. A. Litovitz, and P. B. Macedo, J. Chem. Phys. 55, 2028 (1971).

    Article  ADS  Google Scholar 

  34. D. S. Sanditov, Dokl. Akad. Nauk 390(1–3), 209 (2003) [Dokl. Phys. Chem. 390 (1–3), 122 (2003)].

    MATH  Google Scholar 

  35. J. D. Ferry, Viscoelastic Properties of Polymers (Inostrannaya Literatura, Moscow, 1963; Wiley, New York, 1980).

    Google Scholar 

  36. V. V. Tarasov, Problems of the Physics of Glass (Stro’izdat, Moscow, 1979) [in Russian].

    Google Scholar 

  37. S. C. Waterton, J. Soc. Glass Technol. 16, 244 (1932).

    Google Scholar 

  38. N. I. Shishkin, Zh. Tekh. Fiz. 26, 1461 (1956).

    Google Scholar 

  39. E. Jenckel, Z. Phys. Chem. 184, 309 (1939).

    Google Scholar 

  40. G. Meerlender, Rheol. Acta 6, 309 (1967).

    Google Scholar 

  41. F. Lindemann, Physica (Amsterdam) 7, 609 (1910).

    Google Scholar 

  42. B. D. Sanditov, M. V. Darmaev, D. S. Sanditov, and V. V. Mantatov, Deform. Razrushenie Mater. 4, 18 (2008).

    Google Scholar 

  43. V. N. Novikov and A. P. Sokolov, Nature (London) 431, 961 (2004).

    Article  ADS  Google Scholar 

  44. D. S. Sanditov, A. A. Mashanov, B. D. Sanditov, and V. V. Mantatov, Fiz. Khim. Stekla 34(4), 512 (2008) [Glass Phys. Chem. 34 (4), 389 (2008)].

    Google Scholar 

  45. N. S. Andreev, N. A. Bokov, Fiz. Khim. Stekla 22(4), 407 (1996) [Glass Phys. Chem. 22 (4), 295 (1996)].

    Google Scholar 

  46. A. I. Olemskoĭ and A. V. Khomenko, Zh. Tekh. Fiz. 70(6), 10 (2000) [Tech. Phys. 45 (6), 672 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sanditov.

Additional information

Original Russian Text © D.S. Sanditov, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 5, pp. 850–861.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanditov, D.S. Liquid-glass transition as the freezing of characteristic acoustic frequencies. J. Exp. Theor. Phys. 111, 749–759 (2010). https://doi.org/10.1134/S1063776110110063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110110063

Keywords

Navigation