Skip to main content
Log in

Hydrodynamic vacuum sources of dark matter self-generation in an accelerating universe without a Big Bang

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have obtained a generalization of the hydrodynamic theory of vacuum in the context of general relativity. While retaining the Lagrangian character of general relativity, the new theory provides a natural alternative to the view that the singularity is inevitable in general relativity and the theory of a hot Universe. We show that the macroscopic source-sink motion as a whole of ordinary (dark) matter that emerges during the production of particles out of the vacuum can be a new source of gravitational vacuum polarization (determining the variability of the cosmological term in general relativity). We have removed the well-known problems of the cosmological constant by refining the physical nature of dark energy associated precisely with this hydrodynamically initiated variability of the vacuum energy density. A new exact solution of the modified general relativity equations that contains no free (fitting) parameter additional to those available in general relativity has been obtained. It corresponds to the continuous and metric-affecting production of ultralight dark matter particles (with mass m 0 = (ħ/c 2) \( \sqrt {12\rho _0 k} \) ≈ 3 × 10−66 g, k is the gravitational constant) out of the vacuum, with its density ρ0, constant during the exponential expansion of a spatially flat Universe, being retained. This solution is shown to be stable in the regime of cosmological expansion in the time interval −∞ < t < t max, when t = 0 corresponds to the present epoch and t max= 2/3H 0 cΩ0m ≈ 38 × 109 yr at Ω0m = ρ0c ≈ 0.28 (H 0 is the Hubble constant, ρc is the critical density). For t > t max, the solution becomes exponentially unstable and characterizes the inverse process of dark matter particle absorption by the vacuum in the regime of contraction of the Universe. We consider the admissibility of the fact that scalar massive photon pairs can be these dark matter particles. Good quantitative agreement of this exact solution with the cosmological observations of SnIa, SDSS-BAO, and the decrease in the acceleration of the expansion of the Universe has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, arXiv:astro-ph/0005265v1.

  2. V. Sahni and A. Starobinsky, arXiv:astro-ph//9904398v2.

  3. V. Sahni and A. Starobinsky, arXiv:astro-ph//061002843.

  4. A. D. Chernin, Usp. Fiz. Nauk 178(3), 267 (2008) [Phys.—Usp. 51 (3), 253 (2008)].

    Article  Google Scholar 

  5. V. N. Lukash and V. A. Rubakov, Usp. Fiz. Nauk 178(3), 301 (2008) [Phys.—Usp. 51 (3), 283 (2008)].

    Article  Google Scholar 

  6. A. Shafieloo, V. Sahni, and A. Starobinsky, arXiv: 0903.5141v2 [astro-ph.CO].

  7. Yi-Fu Cai, E. N. Saridakis, M. R. Setare, and J.-Q. Xia, arXiv:0909.2776v1 [hep-th].

  8. É. B. Gliner, Zh. Éksp. Teor. Fiz. 49, 542 (1965) [Sov. Phys. JETP 22, 378 (1965)].

    Google Scholar 

  9. É. B. Gliner, Dokl. Akad. Nauk SSSR 192, 771 (1970) [Sov. Phys. Dokl. 15, 559 (1970)].

    ADS  Google Scholar 

  10. Ya. B. Zel’dovich, Pis’ma Zh. Éksp. Teor. Fiz. 6(9), 883 (1967) [JETP Lett. 6 (9), 316 (1967)].

    Google Scholar 

  11. A. D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1967) [Sov. Phys. Dokl. 12, 1040 (1967)].

    ADS  Google Scholar 

  12. C. Beck and M. C. Mackey, arXiv:astro-ph/0703364v2.

  13. J. Väliviita, E. Majerrotto, and R. Maarteus, arXiv: 0804.0232v1 [astro-ph].

  14. J.-H. He and B. Wang, arXiv:0801.4233v2 [astro-ph].

  15. W. Hawking and R. Penrose, Proc. R. Soc. London, Ser. A 314, 1529 (1970).

    MathSciNet  Google Scholar 

  16. P. J. E. Peebles, The Large-Scale Structure of the Universe (Princeton University Press, Princeton, NJ, United States, 1980; Mir, Moscow, 1983).

    Google Scholar 

  17. Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics, Vol. II: The Structure and Evolution of the Universe (Nauka, Moscow, 1975; University of Chicago Press, Chicago, 1983).

    Google Scholar 

  18. E. A. Novikov, Phys. Fluids 15(9), L65 (2003).

    Article  ADS  Google Scholar 

  19. E. A. Novikov, arXiv:nlin PS/060850v5.

  20. V. L. Ginzburg, D. A. Kirzhnits, and A. A. Lyubushin, Zh. Éksp. Teor. Fiz. 60, 451 (1971) [Sov. Phys. JETP 33, 242 (1971)].

    ADS  Google Scholar 

  21. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  22. A. Pelinson, arXiv:0903.1970v1 [astro-ph.CO].

  23. B. S. DeWitt, in General Relativity, Ed. by S. Hawking and W. Israel (Cambridge University Press, Cambridge, 1979; Mir, Moscow, 1983), p. 296.

    Google Scholar 

  24. B. Whitt, Phys. Lett. B 145, 176 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  25. A. S. Monin, P. Ya. Polubarinova-Kochina, and V. I. Khlebnikov, Cosmology, Hydrodynamics, and Turbulence: A. A. Fridman and Developments of His Scientific Legacy (Nauka, Moscow, 1989), Sect. 8 (written by A. A. Starobinskiĭ) [in Russian].

    Google Scholar 

  26. A. A. Starobinskii, Pis’ma Astron. Zh. 4(2), 155 (1978) [Sov. Astron. Lett. 4 (2), 82 (1978)].

    ADS  Google Scholar 

  27. L. Parker and S. A. Fulling, Phys. Rev. D: Part. Fields 7, 2357 (1973).

    ADS  Google Scholar 

  28. S. Chen and J. Jing, arXiv:0904.2950v1 [gr-qc].

  29. T. D. Zlosnik, P. G. Ferrein, and G. D. Starkman, Phys. Rev. D: Part. Fields 75, 044 017 (2007).

    Google Scholar 

  30. P. A. Nakaznoy, Zh. Éksp. Teor. Fiz. 134(3), 481 (2008) [JETP 107 (3), 405 (2008)].

    Google Scholar 

  31. A. B. Balakin and H. Dehnen, arXiv:0910.0102v1 [gr-qc].

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1973; Butterworth-Heinemann, Oxford, 1975).

    Google Scholar 

  33. O. I. Bogoyavlenskii, Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics (Nauka, Moscow, 1980; Springer, Berlin, 1985).

    Google Scholar 

  34. A. S. Chefranov and S. G. Chefranov, Dokl. Akad. Nauk 393(4–6), 624 (2003) [Dokl. Phys. 48 (12), 696 (2003)].

    MathSciNet  Google Scholar 

  35. G. L. Murphy, Phys. Rev. D: Part. Fields 8, 4231 (1973).

    ADS  Google Scholar 

  36. S. G. Chefranov, Zh. Éksp. Teor. Fiz. 126(2), 333 (2004) [JETP 99 (2), 296 (2004)].

    Google Scholar 

  37. S. G. Chefranov, Phys. Rev. Lett. 93, 254 801 (2004).

    Google Scholar 

  38. V. A. Belinskiĭ, L. P. Grishchuk, Ya. B. Zel’dovich, and I. M. Khalatnikov, Zh. Éksp. Teor. Fiz. 89(2), 346 (1985) [Sov. Phys. JETP 62 (2), 195 (1985)].

    ADS  Google Scholar 

  39. A. S. Goldhaber and M. M. Nieto, Rev. Mod. Phys. 43, 277 (1971).

    Article  ADS  Google Scholar 

  40. L. de Broglie and J. P. Vigier, Phys. Rev. Lett. 28, 1001 (1972).

    Article  ADS  Google Scholar 

  41. V. A. Ugarov, Special Theory of Relativity (Nauka, Moscow, 1977; Mir, Moscow, 1979).

    Google Scholar 

  42. H. Georgi, P. Ginspurg, and S. L. Glashow, Nature (London) 36, 765 (1983).

    Article  ADS  Google Scholar 

  43. R. Lakes, Phys. Rev. Lett. 80, 1826 (1998).

    Article  ADS  Google Scholar 

  44. A. Vilenkin, Phys. Rep. 139, 263 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  45. D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, M. R. Blanton, R. C. Nichol, R. Scranton, H. Seo, M. Tegmark, Z. Zheng, S. Anderson, J. Annis, N. Bahcall, J. Brinkmann, S. Burles, F. J. Castander, A. Connolly, I. Csabai, M. Doi, M. Fukugita, J. A. Frieman, K. Glazebrook, J. E. Gunn, J. S. Hendry, G. Hennessy, Z. Ivezic, S. Kent, G. R. Knapp, H. Lin, Y. Loh, R. H. Lupton, B. Margon, T. McKay, A. Meiksin, J. A. Munn, A. Pope, M. Richmond, D. Schlegel, D. Schneider, K. Shimasaku, C. Stoughton, M. Strauss, M. SubbaRao, A. S. Szalay, I. Szapudi, D. Tucker, B. Yanny, and D. York, Astrophys. J. 633, 560 (2005); arXiv:astro-ph/0501171.

    Article  ADS  Google Scholar 

  46. A. Ashtekar, arXiv:0812.4703v1 [gr-qc].

  47. N. Arkani-Hamed, L. J. Hall, C. Kolda, and H. Murayama, Phys. Rev. Lett. 85, 4434 (2000).

    Article  ADS  Google Scholar 

  48. L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SSSR 102, 489 (1955).

    MATH  MathSciNet  Google Scholar 

  49. E. A. Novikov, arXiv:nlin.PS/0509029v1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Chefranov.

Additional information

Original Russian Text © S.G. Chefranov, E.A. Novikov, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 5, pp. 830–843.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chefranov, S.G., Novikov, E.A. Hydrodynamic vacuum sources of dark matter self-generation in an accelerating universe without a Big Bang. J. Exp. Theor. Phys. 111, 731–743 (2010). https://doi.org/10.1134/S106377611011004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611011004X

Keywords

Navigation