Skip to main content
Log in

Ordinary SQUID interferometers and superfluid helium matter wave interferometers: The role of quantum fluctuations

  • Reviews
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

When comparing the operation of a superfluid helium matter wave quantum interferometer (He SQUID) with that of an ordinary direct-current quantum interferometer (dc SQUID), we estimate their resolution limitation that correspond to quantum fluctuations. An alternative mode of operation of the interferometer as a unified macroquantum system is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Clarke, Philos. Mag. 13, 155 (1966).

    Article  ADS  Google Scholar 

  2. A. H. Silver and J. E. Zimmerman, Phys. Rev. 157, 317 (1967).

    Article  ADS  Google Scholar 

  3. M. R. Beasley and W. W. Webb, in Proceedings of the Symposium on the Physics of Superconducting Devices, Charlottesville, Virginia, United States, 1967 (Charlottesville, 1967), p. V–I.

  4. B. D. Josephson, Phys. Lett. 1, 251 (1962).

    Article  MATH  ADS  Google Scholar 

  5. I. Giaever, Phys. Rev. Lett. 5, 464 (1960).

    Article  ADS  Google Scholar 

  6. B. D. Josephson, Rev. Mod. Phys. 46, 251 (1974).

    Article  ADS  Google Scholar 

  7. P. W. Anderson, Phys. Today 23, 20 (1970).

    Article  Google Scholar 

  8. A. B. Pippard, NASI 76, 1 (1976).

    Google Scholar 

  9. K. K. Likharev and B. T. Ul’rikh, Systems with Josephson Junctions (Moscow State University, Moscow, 1978), p. 447 [in Russian].

    Google Scholar 

  10. A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982; Mir, Moscow, 1984), p. 639.

    Book  Google Scholar 

  11. J. Clarke, Phys. Today 39, 36 (1986).

    Article  Google Scholar 

  12. Weak Superconductivity: A Collection of Articles, Ed. by B. B. Shvarts and S. Foner (Mir, Moscow, 1980), p. 256 [in Russian].

    Google Scholar 

  13. I. K. Yanson, V. M. Svistunov, and I. M. Dmitrienko, Zh. Éksp. Teor. Fiz. 48, 976 (1965) [Sov. Phys. JETP 21, 650 (1965)].

    Google Scholar 

  14. E. Hoskinson, R. E. Packard, and Th. M. Haard, Nature (London) 433, 376 (2005).

    Article  ADS  Google Scholar 

  15. I. M. Khalatnikov, Theory of Superfluidity (Benjamin, New York, 1965; Nauka, Moscow, 1971), p. 320.

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9: E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics: Part 2 (Nauka, Moscow, 1978; Pergamon, London, 1980), p. 447.

    Google Scholar 

  17. J. Ziman, Elements of Advanced Quantum Theory (Cambridge University Press, Cambridge, 1969; Mir, Moscow, 1980), p. 286.

    MATH  Google Scholar 

  18. M. V. Sadovskiĭ, Lectures on the Quantum Field Theory (Institute of Computer Sciences, Moscow, 2003), p. 480 [in Russian].

    Google Scholar 

  19. C. Patterman, Superfluid Hydrodynamics (North-Holland, Amsterdam, The Netherlands, 1974; Mir, Moscow, 1978), p. 520.

    Google Scholar 

  20. P. W. Anderson and A. H. Dayem, Phys. Rev. Lett. 13, 195 (1964).

    Article  ADS  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1980), p. 583.

    Google Scholar 

  22. Yu. G. Mamaladze and O. D. Cheshvili, Zh. Éksp. Teor. Fiz. 50(1), 169 (1966) [Sov. Phys. JETP 23 (1), 112 (1966)].

    Google Scholar 

  23. R. Feynman, Statistical Mechanics (Addison-Wesley, Reading, Massachusetts, United States, 1972; Mir, Moscow, 1975), p. 407.

    Google Scholar 

  24. A. I. Golovashkin, V. M. Mishachev, A. M. Tskhovrebov, I. V. Berlov, and G. N. Izmaĭlov, Kratk. Soobshch. Fiz., No. 6, 21 (2006).

  25. P. L. Richards and P. W. Anderson, Phys. Rev. Lett. 14, 540 (1965).

    Article  ADS  Google Scholar 

  26. D. R. Tilley and J. Tilley, Superfluidity and Superconductivity (Van Nostrand, New York, 1974; Mir, Moscow, 1977), p. 304.

    Google Scholar 

  27. Y. Sato, E. Hoskinson, and R. E. Packard, Phys. Rev. B: Condens. Matter 74, 144 502 (2006).

    Google Scholar 

  28. Y. Sato, A. Joshi, and R. E. Packard, Appl. Phys. Lett. 91, 074 107 (2007).

    Article  Google Scholar 

  29. A. I. Golovashkin, G. N. Izmaĭlov, L. N. Zherikhina, G. V. Kuleshova, and A. M. Tskhovrebov, Kvantovaya Élektron. (Moscow) 36, 1168 (2006).

    Article  Google Scholar 

  30. A. I. Golovashkin, G. N. Izmaĭlov, G. V. Kuleshova, T. Q. Kokhánh, A. M. Tskhovrebov, and L. N. Zherikhina, Eur. Phys. J. B 58, 243 (2007).

    Article  ADS  Google Scholar 

  31. A. I. Golovashkin, G. N. Izmaĭlov, V. V. Ozolin, A. M. Tzhovrebov, and L. N. Zherikhina, “Registration of Gravimagnetism by the 4He Superfluid State,” in Proceedings of the International Conference “Physical Interpretations of Relativity Theory” (PIRT-2006), Liverpool, United Kingdom, 2006 (Liverpool, 2006).

  32. A. N. Vystavkin, V. N. Gubankov, L. S. Kuzmin, K. K. Likharev, V. V. Migulin, and V. K. Semenov, Rev. Phys. Appl. 9, 79 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Zherikhina.

Additional information

Original Russian Text © A.I. Golovashkin, L.N. Zherikhina, A.M. Tskhovrebov, G.N. Izmailov, V.V. Ozolin, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 2, pp. 373–380.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovashkin, A.I., Zherikhina, L.N., Tskhovrebov, A.M. et al. Ordinary SQUID interferometers and superfluid helium matter wave interferometers: The role of quantum fluctuations. J. Exp. Theor. Phys. 111, 332–339 (2010). https://doi.org/10.1134/S1063776110080285

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110080285

Keywords

Navigation