Skip to main content
Log in

Atom-photon cluster as an elementary emitter

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The interaction of an atomic ensemble localized in a microcavity with external electromagnetic fields under Raman resonance conditions with an optically forbidden atomic transition involving photons of the microcavity mode has been described in terms of third-order polynomial algebra. It has been shown that atoms and photons localized in the microcavity under these conditions form a united object, an atom-photon cluster, on the states of which the irreducible representations of polynomial algebra are implemented. Classical coherent and quantum broadband electromagnetic fields are considered as external fields. The effective Hamiltonian, effective dipole moment operator, and relaxation operator of the atom-photon cluster are expressed in terms of the generators of polynomial algebra, which is the algebra of the dynamical symmetry of the problem. The developed mathematical technique has been applied to describe the main radiative processes—spontaneous emission and nutation effect—on atom-photon clusters. All of these effects are peculiar and differ from similar phenomena on two-level atoms, but only simple cases of the mentioned radiative processes have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Karasev, Teor. Mat. Fiz. 95(1), 3 (1993) [Theor. Math. Phys. 95 (1), 367 (1993)].

    MathSciNet  Google Scholar 

  2. V. P. Karassiov, J. Phys. A: Math. Gen. 27, 153 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. V. P. Karassiov, Phys. Lett. A 238, 19 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. V. P. Karasev, Lazernye Issled. Ross. 20(3), 1 (1999).

    Google Scholar 

  5. V. P. Karassiov, A. A. Gusev, and S. I. Vinitsky, Phys. Lett. A 295, 247 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. E. G. Kalnins and V. P. Karassiov, J. Russ. Laser Res. 24, 402 (2003).

    Article  Google Scholar 

  7. V. P. Karassiov, J. Phys. A: Math. Gen. 26, 4345 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  8. V. P. Karasev and A. V. Masalov, Opt. Spektrosk. 74(5), 928 (1993) [Opt. Spectrosc. 74 (5), 551 (1993)].

    Google Scholar 

  9. V. P. Karassiov, Opt. Spektrosk. 103(1), 143 (2007) [Opt. Spectrosc. 103 (1), 137 (2007)].

    Article  ADS  Google Scholar 

  10. V. P. Karassiov and S. P. Kulik, Zh. Éksp. Teor. Fiz. 131(1), 37 (2007) [JETP 104 (1), 30 (2007)].

    Google Scholar 

  11. V. P. Karasev, Pis’ma Zh. Éksp. Teor. Fiz. 84(12), 759 (2006) [JETP Lett. 84 (12), 640 (2006)].

    Google Scholar 

  12. I. P. Vadeiko, G. P. Miroshnichenko, A. V. Rybin, and J. Timonen, Phys. Rev. A: At., Mol., Opt. Phys. 67, 053808 (2003).

    ADS  Google Scholar 

  13. E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  14. M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 (1968).

    Article  ADS  Google Scholar 

  15. T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

    Article  MATH  ADS  Google Scholar 

  16. F. Persico and G. Vetri, Phys. Rev. A: At., Mol., Opt. Phys. 12, 2083 (1975).

    ADS  Google Scholar 

  17. C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  18. J. Rarity and C. Weisbuch, Microcavities and Photonic Bandgaps (Kluwer, Dordrecht, The Netherlands, 1996).

    Google Scholar 

  19. Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wiley, New York, 1999).

    MATH  Google Scholar 

  20. H. Benisty, J.-M. Gérard, R. Houdré, J. Rarity, and C. Weisbuch, Confined Photon Systems (Springer, Berlin, 1999).

    Book  MATH  Google Scholar 

  21. R. A. Izmailov and A. Ya. Kazakov, Zh. Éksp. Teor. Fiz. 120(5), 1172 (2001) [JETP 93 (5), 1017 (2001)].

    Google Scholar 

  22. A. Ya. Kazakov, Zh. Éksp. Teor. Fiz. 124(6), 1264 (2003) [JETP 97 (6), 1131 (2003)].

    Google Scholar 

  23. V. N. Gorbachev and A. I. Trubilko, Zh. Éksp. Teor. Fiz. 135(2), 227 (2009)[JETP 108 (2), 203 (2009)].

    Google Scholar 

  24. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer, Dordrecht, The Netherlands, 1999); A. M. Basharov, Zh. Éksp. Teor. Fiz. 102 (4), 1126 (1992) [Sov. Phys. JETP 75 (4), 611 (1992)].

    MATH  Google Scholar 

  25. A. M. Basharov, in Proceedings of the XII International Youth Scientific School “The Coherent Optics and Optical Spectroscopy,” Kazan State University, Kazan, Russia, 2008 (Kazan, 2008), Issue 12, p. 34.

  26. A. M. Basharov and A. I. Maĭmistov, Opt. Spektrosk. 88(3), 428 (2000) [Opt. Spectrosc. 88 (3), 380 (2000)].

    Article  Google Scholar 

  27. C. W. Gardiner, Quantum Noise (Springer, Berlin, 1991); C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2004).

    MATH  Google Scholar 

  28. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov, Super-Radiance: Multiatomic Coherent Emission (Institute of Physics, Bristol, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Basharov.

Additional information

Original Russian Text © A.M. Basharov, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 137, No. 6, pp. 1090–1106.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basharov, A.M. Atom-photon cluster as an elementary emitter. J. Exp. Theor. Phys. 110, 951–965 (2010). https://doi.org/10.1134/S106377611006004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611006004X

Keywords

Navigation