Skip to main content
Log in

Flow of a Bose-Einstein condensate in a quasi-one-dimensional channel under the action of a piston

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The problem of the flow of a Bose—Einstein condensate in a channel under the action of a piston is considered. Problems of this kind are topical in connection with experiments on condensate flow control in quasi-one-dimensional (cigar-shaped) traps, in wh ich the repulsive potential produced by a laser beam focused across the trap acts as a piston. A dispersive shock wave characterized by rapid oscillations of the condensate density and flow velocity is shown to be formed in the condensate flow after some instant of time for an arbitrary law of piston motion. The Whitham averaging method is used to obtain a solution for the main parameters of the dispersive shock wave in the case of a uniformly accelerated piston motion. The evolution of the dispersive shock wave immediately after the breaking time, when the dispersionless solution is well approximated by a cubic parabola for the coordinate dependence of the density, is analyzed in the case of an arbitrary piston motion. Comparison shows good agreement of the numerical calculation with the approximate analytical theory. The developed theory complements the previously considered case of a piston moving with a constant velocity and is important for describing the condensate transport in atomic chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 77, 420 (1996).

    Article  ADS  Google Scholar 

  2. M. Edwards, P. A. Ruprecht, K. Burnett, R. J. Dodd, and C. W. Clark, Phys. Rev. Lett. 77, 1671 (1996).

    Article  ADS  Google Scholar 

  3. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).

    Article  ADS  Google Scholar 

  4. Y. Castinand R. Dum, Phys. Rev. Lett. 77, 5315 (1996).

    Article  ADS  Google Scholar 

  5. Yu. Kagan, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 76, 2670 (1996).

    Article  ADS  Google Scholar 

  6. Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. A: At., Mol., Opt. Phys. 54, R1753 (1996).

    ADS  Google Scholar 

  7. U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, Europhys. Lett. 41, 1 (1998).

    Article  ADS  Google Scholar 

  8. A. M. Kamchatnov, Zh. Éksp. Teor. Fiz. 125(5), 1041 (2004) [JETP 98 (5), 908 (2004)].

    Google Scholar 

  9. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498(1999).

    Article  ADS  Google Scholar 

  10. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).

    Article  ADS  Google Scholar 

  11. M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend, S. Inouye, and W. Ketterle, Phys. Rev. Lett. 79, 553(1997).

    Article  ADS  Google Scholar 

  12. K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Nature (London) 417, 150 (2002).

    Article  ADS  Google Scholar 

  13. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999).

    Article  ADS  Google Scholar 

  14. J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark, L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson, W. P. Reinhart, S. L. Rolston, B. I. Schneider, and W. D. Phillips, Science (Washington) 287, 97 (2000).

    Article  ADS  Google Scholar 

  15. M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P. Engels, and V. Schweikhard, Phys. Rev. A: At., Mol., Opt. Phys. 74, 023623 (2006).

    ADS  Google Scholar 

  16. A. M. Kamchatnov, A. Gammal, and R. A. Kraenkel, Phys. Rev. A: At., Mol., Opt. Phys. 69, 063605 (2004).

    ADS  Google Scholar 

  17. B. Damski, Phys. Rev. A: At., Mol., Opt. Phys. 69, 043610(2004).

    ADS  Google Scholar 

  18. A. V. Gurevich and A. L. Krylov, Zh. Éksp. Teor. Fiz. 92(5), 1684 (1987) [Sov. Phys. JETP 65 (5), 944 (1987)].

    ADS  Google Scholar 

  19. G. A. El, V. V. Geogjaev, A. V. Gurevich, and A. L. Krylov, Physica D (Amsterdam) 87, 186 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Carusotto, S. X. Hu, L. A. Collins, and A. Smerzi, Phys. Rev. Lett. 97, 260 403 (2006).

    Article  Google Scholar 

  21. Yu. G. Gladush, G. A. El, A. Gammal, and A. M. Kamchatnov, Phys. Rev. A: At., Mol., Opt. Phys. 75, 033619 (2007).

    ADS  Google Scholar 

  22. Yu. G. Gladush and A. M. Kamchatnov, Zh. Éksp. Teor. Fiz. 132(3), 589 (2007) [JETP 105 (3), 520 (2007)].

    Google Scholar 

  23. Yu. G. Gladush, L. A. Smirnov, and A. M. Kamchatnov, J. Phys. B: At., Mol., Opt. Phys. 41, 165 301 (2008).

    Article  Google Scholar 

  24. G. A. El and A. M. Kamchatnov, Phys. Lett. A 350, 192 (2006); erratum: Phys. Lett. A 352, 554 (2006).

    Article  ADS  Google Scholar 

  25. G. A. El, A. Gammal, and A. M. Kamchatnov, Phys. Rev. Lett. 97, 180 405 (2006).

    Article  Google Scholar 

  26. A. M. Kamchatnov and L. P. Pitaevskii, Phys. Rev. Lett. 100, 160 402 (2008).

    Article  Google Scholar 

  27. P. Engels and C. Atherton, Phys. Rev. Lett. 99, 160 405 (2007).

    Article  Google Scholar 

  28. V. Hakim, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 55, 2835 (1997).

    Google Scholar 

  29. A. M. Leszczyszyn, G. A. El, Yu. G. Gladush, and A. M. Kamchatnov, Phys. Rev. A: At., Mol., Opt. Phys. 79, 063 608 (2009).

    Google Scholar 

  30. M. A. Hoefer, M. J. Ablowitz, and P. Engels, Phys. Rev. Lett. 100, 084 504 (2008).

    Article  Google Scholar 

  31. E. P. Gross, Nuovo Cimento 20, 454 (1961).

    Article  MATH  Google Scholar 

  32. L. P. Pitaevskis-, Zh. Éksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)].

    Google Scholar 

  33. V. M. Pérez-García, H. Michinel, and H. Herrero, Phys. Rev. A: At., Mol., Opt. Phys. 57, 3837 (1998).

    ADS  Google Scholar 

  34. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Butterworth-Heinemann, Oxford, 2000; Fizmatlit, Moscow, 2006).

    Google Scholar 

  35. A. M. Kamchatnov, Nonlinear Periodic Waves and Their Modulations (World Sci., Singapore, 2000).

    MATH  Google Scholar 

  36. M. G. Forest and J. E. Lee, in Oscillation Theory, Computation, and Methods of Compensated Compactness, Ed. by C. Dafermos, J. L. Ericksen, D. Kinderlehrer, and M. Slemrod, IMA Volumes on Mathematics and Its Applications (Springer, New York, 1987), Vol. 2.

    Google Scholar 

  37. M. V. Pavlov, Teor. Mat. Fiz. 71(3), 351 (1987) [Theor. Math. Phys. 71 (3), 584 (1987)].

    Google Scholar 

  38. A. V. Gurevich, A. L. Krylov, and G. A. Él’, Zh. Éksp. Teor. Fiz. 101(6), 1797 (1992) [Sov. Phys. JETP 74 (6), 957(1992)].

    Google Scholar 

  39. S. P. Tsarev, Izv. Akad. Nauk SSSR, Ser. Mat. 54, 1048 (1990).

    MathSciNet  Google Scholar 

  40. V. R. Kudashev and S. E. Sharapov, Teor. Mat. Fiz. 85(2), 205 (1990) [Theor. Math. Phys. 85 (2), 1155 (1990)].

    MATH  MathSciNet  Google Scholar 

  41. G. V. Potemin, Usp. Mat. Nauk 43, 211 (1988).

    MathSciNet  Google Scholar 

  42. A. V. Gurevich and L. P. Pitaevskis-, Zh. Éksp. Teor. Fiz. 65(2), 590 (1973) [Sov. Phys. JETP 38 (2), 291 (1973)].

    ADS  Google Scholar 

  43. A. M. Kamchatnov, R. A. Kraenkel, and B. A. Umarov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 66, 036 609 (2002).

    MathSciNet  Google Scholar 

  44. G. A. El, A. M. Kamchatnov, V. V. Khodorovskis-, E. S. Annibale, and A. Gammal, arXiv:0906.2394.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Korneev.

Additional information

Original Russian Text © A.M. Kamchatnov, S.V. Korneev, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ-Fiziki, 2010, Vol. 137, No. 1, pp. 191–205.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamchatnov, A.M., Korneev, S.V. Flow of a Bose-Einstein condensate in a quasi-one-dimensional channel under the action of a piston. J. Exp. Theor. Phys. 110, 170–182 (2010). https://doi.org/10.1134/S1063776110010206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110010206

Keywords

Navigation