Skip to main content
Log in

Broken spin symmetry approach to chemical reactivity and magnetism of graphenium species

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The basic problem of weak interaction between odd electrons in graphene and silicene is considered in the framework of the broken spin symmetry approach. This approach exhibits the peculiarities of the odd-electron behavior via both enhanced chemical reactivity and magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Sheka, Int. J. Quantum Chem. 107, 2932 (2007).

    ADS  Google Scholar 

  2. E. F. Sheka, Int. J. Quantum Chem. 107, 2803 (2007).

    Article  ADS  Google Scholar 

  3. E. F. Sheka and L. A Chernozatonskii, J. Phys. Chem. C 111, 10 771 (2007).

    Article  Google Scholar 

  4. E. F. Sheka, Int. J. Quantum Chem. 100, 388 (2004).

    Article  Google Scholar 

  5. E. F. Sheka and V. A. Zayets, Zh. Fiz. Khim. 79(12), 2250 (2005) [Russ. J. Phys. Chem. 79 (12), 2009 (2005)].

    Google Scholar 

  6. E. F. Sheka, V A. Zayets, and I. Ya. Ginzburg, Zh. Éksp. Teor. Fiz. 130(5), 840 (2006) [JETP 103 (5), 728 (2006)].

    Google Scholar 

  7. E. F. Sheka and L. A. Chernozatonskii, Int. J. Quantum Chem. 110 (2010); DOI: 10.102/qua.22286.

  8. E. R. Davidson and A. E. Clark, Phys. Chem. Chem. Phys. 9, 1881 (2007).

    Article  Google Scholar 

  9. L. Noodleman, J. Chem. Phys. 74, 5737 (1981).

    Article  ADS  Google Scholar 

  10. J. A Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).

    Article  ADS  Google Scholar 

  11. U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629(1972).

    Article  ADS  Google Scholar 

  12. I. Kaplan, Int. J. Quantum Chem. 107, 2595 (2007).

    Article  ADS  Google Scholar 

  13. C. Adamo, V. Barone, A. Bencini, R. Broer, M. Filatov, N. M. Harrison, E Illas, J. P. Malrieu, and I. de P. R. Moreira, J. Chem. Phys. 124, 107101 (2006).

    Article  ADS  Google Scholar 

  14. J. Hachmann, J. J. Dorando, M. Aviles, and G. K. Chan, J. Chem. Phys. 127, 134 309 (2007).

    Article  Google Scholar 

  15. S. Dutta, S. Lakshmi, and S. K. Pati, Phys. Rev B: Condens. Matter 77, 073 412 (2008).

    Google Scholar 

  16. P. O. Löwdin, Adv Chem. Phys. 14, 283 (1969).

    Article  Google Scholar 

  17. K. Takatsuka, T. Fueno, and K. Yamaguchi, Theor. Chim.Acta 48, 175(1978).

    Article  Google Scholar 

  18. V. N. Staroverov and E. R. Davidson, Chem. Phys. Lett. 330, 161(2000).

    Article  ADS  Google Scholar 

  19. D. A. Zhogolev and V. B. Volkov, Methods, Algorithms, and Programs for Quantum-Chemical Calculations of Molecules (Naukova Dumka, Kiev, 1976) [in Russian].

    Google Scholar 

  20. V. A. Zayets, CLUSTER-Z1: Quantum-Chemical Software for Calculations in the s,p-Basis (Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kiev, 1990) [in Russian].

    Google Scholar 

  21. J. Wang, A D. Becke, and V. H. Smith, Jr., J. Chem. Phys. 102, 3477(1995).

    Article  ADS  Google Scholar 

  22. A. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 126, 214 104 (2007).

    Google Scholar 

  23. L. Noodleman and E. Davidson, Chem. Phys. 109, 1311(1986).

    Article  Google Scholar 

  24. J. Schnack, Lect. Notes Phys. 645, 155 (2004).

    Article  ADS  Google Scholar 

  25. E. Illas, I. de P. R. Moreira, C. de Graaf, and V. Barone, Theor. Chem. Acc. 104, 265 (2000).

    Google Scholar 

  26. H. Nagao, M. Nishino, Y. Shigeta, T. Soda, Y Kitagawa, T. Onishi, Y Yoshioka, and K. Yamaguchi, Coord. Chem. Rev. 198, 265 (2000).

    Article  Google Scholar 

  27. D. Dai and M.-H. Whangbo, J. Chem. Phys. 114, 2887 (2001).

    Article  ADS  Google Scholar 

  28. D.-K. Seo, J. Chem. Phys. 127, 184 103 (2007).

    Article  Google Scholar 

  29. W.-C. Han and L. Noodelman, Inorg. Chim. Acta 361, 973 (2008).

    Article  Google Scholar 

  30. A. K. Zvezdin, V M. Matveev, A A Mukhin, and A. I. Popov, Rear-Earth Ions in Magnetically Ordered Crystals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  31. O. Kahn, Molecular Magnetism (Wiley, New York, 1993).

    Google Scholar 

  32. X. Gao, Z. Zhou, Y Zhao, S. Nagase, S. B. Zhang, and Z. Chen, J. Phys. Chem. A 112, 12 677 (2008).

    Google Scholar 

  33. S. E. Stein and R. L. Brown, J. Am. Chem. Soc. 109, 3721 (1987).

    Article  Google Scholar 

  34. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Phys. Soc. Jpn. 65, 1920 (1996).

    Article  ADS  Google Scholar 

  35. K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev B: Condens. Matter 54, 17954(1996).

    ADS  Google Scholar 

  36. Y. Miyamoto, K. Nakada, and M. Fujita, Phys. Rev B: Condens. Matter 59, 9858 (1999).

    ADS  Google Scholar 

  37. Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, and Y Kaburagi, Phys. Rev B: Condens. Matter 71, 193406 (2005).

    ADS  Google Scholar 

  38. Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, Phys. Rev B: Condens. Matter 73, 085421 (2006).

    ADS  Google Scholar 

  39. D. Jiang, B. G. Sumper, and S. Dai, J. Chem. Phys. 126, 134701 (2007).

    Article  ADS  Google Scholar 

  40. Z. Chen, D. Jiang, X. Lu, H. E Bettinger, S. Dai, P. von R. Schleyer, and K. N. Houk, Org. Lett. 9, 5449 (2007).

    Article  Google Scholar 

  41. H. Lee, Y.-W Son, N. Park, S. Han, and J. Yu, Phys. Rev B: Condens. Matter 72, 174 431 (2005).

    Google Scholar 

  42. D. Jiang, B. G. Sumper, and S. Dai, J. Chem. Phys. 127, 124703(2007).

    Article  ADS  Google Scholar 

  43. O. Hod, V Barone, and G. E. Scuseria, Phys. Rev B: Condens. Matter 77, 035411 (2008).

    ADS  Google Scholar 

  44. S. Dutta and S. K. Pati, J. Phys. Chem. B 112, 1333 (2008).

    Article  Google Scholar 

  45. J. C. Meyer, C. O. Girit, N. F Crommie, and A. Zettl, Nature (London) 454, 319 (2008).

    Article  ADS  Google Scholar 

  46. Ph. Shemella and S. Nayak, Appl. Phys. Lett. 94, 032101(2009).

    Article  ADS  Google Scholar 

  47. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington) 323, 610 (2009).

    Article  Google Scholar 

  48. J. Poater, J. M. Bofill, P. Alemany, and M. Sola, J. Phys. Chem. A 109, 10 629(2005).

    Article  Google Scholar 

  49. E. F. Sheka and L. A. Chernozatonskii, arXiv:0901.3624vl.

  50. E. F Sheka and L. A Chernozatonskii, Pis’mav Zh. Éksp. Teor. Fiz. 89, 412 (2009) [JETP Lett. 89, 352 (2009)].

    Google Scholar 

  51. Y.-W Son, M. L. Cohen, and S. G. Louie, Nature (London) 444, 347 (2006).

    Article  ADS  Google Scholar 

  52. J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford University Press, Oxford, 1932).

    MATH  Google Scholar 

  53. Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Phys. Rev Lett. 84, 1744 (2000).

    Article  ADS  Google Scholar 

  54. T. Enoki and Y Kobayashi, J. Mater. Chem. 15, 3999 (2005).

    Article  Google Scholar 

  55. L. Khryachtchev, S. Novikov, and J. Lahtinen, J. Appl. Phys. 92, 5856 (2009).

    Article  ADS  Google Scholar 

  56. A. L. Sroyuk, A. I. Kryukov, S. Ya. Kuchmii, and V D. Pokhodenko, Teor. Éksp. Khim. 41(2), 67 (2005) [Theor. Exp. Chem. 41 (2), 67 (2005)].

    Google Scholar 

  57. M. P. Sean and W A Dencn, Surf. Interface Anal. 1, 2 (1979).

    Article  Google Scholar 

  58. S. A. Komolov, E. E Lazneva, and A. S. Komolov, Pis’ma Zhh. Tekh. Fiz. 29 (23), 13 (2003) [Tech. Phys. Lett. 29 (12), 974 (2003)].

    Google Scholar 

  59. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  60. A. Kara, C. Leandri, M. E. Davila, P. de Padova, B. Ealet, H. Oughaddou, B. Aufray, and G. Le Lay, arXiv:0811.2611vl.

  61. G. G. Guzman-Verri and L. C. Lew Yan Voon, Phys. Rev. B: Condens. Matter 76, 075 131 (2007).

    Google Scholar 

  62. S. B. Fagan, R. J. Baierle, R. Mota, A. J. R. da Silva, and A. Fazzio, Phys. Rev. B: Condens. Matter 61, 9994 (2000).

    ADS  Google Scholar 

  63. R. Q. Zhang, S. T. Lee, C.-K. Law, W.-K. Li, and B. K. Teo, Chem. Phys. Lett. 364, 251 (2002).

    Article  ADS  Google Scholar 

  64. B. Yan, G. Zhou, J. Wu, W. Duan, and B.-L. Gu, Phys. Rev B: Condens. Matter 73, 155 432 (2006).

    Google Scholar 

  65. D. Perepichka and E Rosei, Small 2, 22 (2006).

    Article  Google Scholar 

  66. P. dePadova, C. Quaresima, P. Perfetti, B. Olivieri, C. Leandri, B. Aufray, S. Vizzini, and G. Le Lay, Nano Lett. 8, 271 (2008).

    Article  ADS  Google Scholar 

  67. P. Gaspar and B. J. Herold, in Carbene Chemistry, Ed. by W. Kirsme (Academic, New York, 1971), Chap. 13, p. 504.

    Google Scholar 

  68. E. F. Sheka, in Lecture Notes in Computer Science, Part II: Computational Science-ICCS2003, Ed. by P. M. A. Sloot, D. Abramson, A V Bogdanov, J. Dongarra, A Y Zomaya, and Y E. Gorbachev (Springer, Berlin, 2003), p. 386.

    Google Scholar 

  69. Bao-xing Li, Pei-lin Cao, and Duan-lin Que, Phys. Rev B 61, 1685(2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Sheka.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheka, E.F., Chernozatonskii, L.A. Broken spin symmetry approach to chemical reactivity and magnetism of graphenium species. J. Exp. Theor. Phys. 110, 121–132 (2010). https://doi.org/10.1134/S1063776110010152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110010152

Keywords

Navigation