Skip to main content
Log in

Dynamics of a thin shell in the Reissner—Nordström metric

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of a thin spherically symmetric gravitating shell around an electrically charged Reissner—Nordström black hole is considered. The energy—momentum tensor of an electrically neutral shell is modeled by an ideal fluid with a polytropic equation of state. The dynamics of a shell with a dust equation of state can be traced completely analytically. The Carter—Penrose diagrams that describe the global geometry and all possible types of motions of a gravitating shell in the case of an eternal black hole have been constructed.

The conditions have been found under which stable oscillatory motions of the shell take place. These transfer it successively from one universe to the next in an infinite series of identical universes. Such stable oscillatory shell motions are shown to be possible for an arbitrary polytropic equation of state of the shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Israel, Nuovo Cimento B 44, 1 (1966).

    Article  ADS  Google Scholar 

  2. W. Israel, Phys. Rev. 153, 1388 (1967).

    Article  ADS  Google Scholar 

  3. K. Kuchar, Czech. J. Phys. B 18, 435 (1968).

    Article  ADS  Google Scholar 

  4. V. De La Cruz and W. Israel, Phys. Rev. 170, 1187 (1968).

    Article  ADS  Google Scholar 

  5. S. K. Blau, E. I. Guendelman, and A. H. Guth, Phys. Rev. D: Part. Fields 35, 1747 (1987).

    MathSciNet  ADS  Google Scholar 

  6. V. A. Berezin, V. A. Kuzmin, and I. I. Tkachev, Phys. Rev. D: Part. Fields 36, 2919 (1987).

    MathSciNet  ADS  Google Scholar 

  7. D. A. Kirzhnits, Pis’ma Zh. Éksp. Teor. Fiz. 15(12), 745 (1972) [JETP Lett. 15 (12), 529 (1972)].

    ADS  Google Scholar 

  8. D. A. Kirzhnits and A. D. Linde, Phys. Lett. B 42, 471 (1972).

    Article  ADS  Google Scholar 

  9. K. Sato, M. Sasaki, H. Kodama, and K. Maeda, Phys. Lett. B 108, 103 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  10. H. Kodama, Prog. Theor. Phys. 63, 1217 (1980).

    Article  ADS  Google Scholar 

  11. K. Sato, M. Sasaki, H. Kodama, and K. Maeda, Prog. Theor. Phys. 65, 1443 (1981).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. H. Kodama, M. Sasaki, K. Sato, and K. Maeda, Prog. Theor. Phys. 66, 2052 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  13. K. Sato, Prog. Theor. Phys. 66, 2287 (1981).

    Article  ADS  Google Scholar 

  14. H. Kodama and M. Sasaki, Prog. Theor. Phys. 68, 1398 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Sasaki, H. Kodama, and K. Sato, Prog. Theor. Phys. 68, 1561 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Kodama, M. Sasaki, and K. Sato, Prog. Theor. Phys. 68, 1979(1982).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. K. Maeda, M. Sasaki, and K. Sato, Prog. Theor. Phys. 69, 89(1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. K. Maeda and H. Sato, Prog. Theor. Phys. 70, 772 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Y. Suto, K. Sato, and H. Sato, Prog. Theor. Phys. 71, 938 (1984).

    Article  ADS  Google Scholar 

  20. A. D. Dolgov, A. F. Illarionov, N. S. Kardashev, and I. D. Novikov, Zh. Éksp. Teor. Fiz. 94(8), 1 (1988) [Sov. Phys. JETP 67 (8), 1517 (1988)].

    ADS  Google Scholar 

  21. C. Barrabes and W. Israel, Phys. Rev. D: Part. Fields 43, 1129(1991).

    MathSciNet  ADS  Google Scholar 

  22. V. A. Berezin, V. A. Kuzmin, and I. I. Tkachev, Phys. Lett. B 120, 91 (1983).

    Article  ADS  Google Scholar 

  23. V. A. Berezin, V. A. Kuzmin, and I. I. Tkachev, Phys. Lett. B 124, 479(1983).

    Article  ADS  Google Scholar 

  24. V. A. Berezin, V. A. Kuzmin, and I. I. Tkachev, Phys. Lett. B 130, 23(1983).

    Article  ADS  Google Scholar 

  25. V. A. Berezin, V. A. Kuz’min, and I. I. Tkachev, Pis’ma Zh. Éksp. Teor. Fiz. 41 (10), 446 (1985) [JETP Lett. 41 (10), 547 (1985)].

    Google Scholar 

  26. Ya. B. Zel’dovich, I. Yu. Kobzarev, and L. B. Okun’, Zh. Éksp. Teor. Fiz. 67 (1), 3 (1974) [Sov. Phys. JETP 40(1), 1(1974)].

    ADS  Google Scholar 

  27. I. Yu. Kobzarev, L. B. Okun’, and M. B. Voloshin, Yad. Fiz. 20(6), 1229 (1975) [Sov. J. Nucl. Phys. 20 (6), 644 (1975)].

    Google Scholar 

  28. S. Coleman, Phys. Rev. D: Part. Fields 15, 2929 (1977).

    ADS  Google Scholar 

  29. C. G. Callan and S. Coleman, Phys. Rev. D: Part. Fields 16, 1762(1977).

    ADS  Google Scholar 

  30. S. Coleman and F. de Luccia, Phys. Rev. D: Part. Fields 21, 3305 (1980).

    ADS  Google Scholar 

  31. K. Maeda, Gen. Relativ. Gravitation 18, 931 (1986).

    MATH  ADS  Google Scholar 

  32. V. A. Berezin, V. A. Kuz’min, and I. I. Tkachev, Zh. Éksp. Teor. Fiz. 86 (3), 785 (1984) [Sov. Phys. JETP 59 (3), 459 (1984)].

    MathSciNet  ADS  Google Scholar 

  33. A. Aurilia, G. Denardo, F. Legovivni, and E. Spallucci, Phys. Lett. B 147, 258 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Aurilia, G. Denardo, F. Legovivni, and E. Spallucci, Nucl. Phys. B 252, 523 (1985).

    Article  ADS  Google Scholar 

  35. A. Aurilia, M. Palmer, and E. Spallucci, Phys. Rev. D: Part. Fields 40, 2511 (1989).

    ADS  Google Scholar 

  36. A. Aguirre and M. C. Johnson, Phys. Rev. D: Part. Fields 72, 103525 (2005).

    ADS  Google Scholar 

  37. J. Kijowski, G. Magli, and D. Malafarina, Gen. Relativ. Gravitation 38, 1697 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. V. I. Dokuchaev and S. V. Chernov, Pis’ma Zh. Éksp. Teor. Fiz. 85(12), 727 (2007) [JETP Lett. 85 (12), 595 (2007)].

    Google Scholar 

  39. V. I. Dokuchaev and S. V. Chernov, Zh. Éksp. Teor. Fiz. 134(2), 245 (2008) [JETP 107 (2), 203 (2008)].

    Google Scholar 

  40. S. V. Chernov and V. I. Dokuchaev, Classical Quantum Gravity 25, 015 004 (2008).

    Article  MathSciNet  Google Scholar 

  41. M. V. Barkov, V. A. Belinski, and G. S. Bisnovatyi-Kogan, Zh. Éksp. Teor. Fiz. 122(3), 435 (2002) [JETP 95(3), 371(2002)].

    MathSciNet  Google Scholar 

  42. L. F. Abbott and S. Coleman, Nucl. Phys. B 259, 170 (1985).

    Article  ADS  Google Scholar 

  43. W. Lee, B.-H. Lee, C. H. Lee, and C. Park, Phys. Rev. D: Part. Fields 74, 123520 (2006).

    ADS  Google Scholar 

  44. W. Lee, B.-H. Lee, C. H. Lee, S. Nam, and C. Park, Phys. Rev. D: Part. Fields 77, 063502 (2008).

    ADS  Google Scholar 

  45. W. Lee, B.-H. Lee, S. Nam, and C. Park, Phys. Rev. D: Part. Fields 75, 103 506 (2007).

    Google Scholar 

  46. V. A. Berezin, Fiz. Élem. Chastits At. Yadra 34, 49 (2003).

    Google Scholar 

  47. V. A. Berezin, Phys. Rev. D: Part. Fields 55, 2139 (1997).

    MathSciNet  ADS  Google Scholar 

  48. V. A. Berezin, A. M. Boyarsky, and A. Yu. Neronov, Phys. Rev. D: Part. Fields 57, 1118 (1998).

    MathSciNet  ADS  Google Scholar 

  49. V. A. Berezin, A. M. Boyarsky, and A. Yu. Neronov, Phys. Lett. B 455, 109 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. V. A. Berezin, arXiv:gr-qc/0112022.

  51. V. A. Berezin, N. G. Kozimirov, V. A. Kuzmin, and I. I. Tkachev, Phys. Lett. B 212, 415 (1988).

    Article  ADS  Google Scholar 

  52. V. A. Berezin, Phys. Lett. B 241, 194 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  53. V. Berezin, V. Dokuchaev, Yu. Eroshenko, and A. Smirnov, Classical Quantum Gravity 22, 4443 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. V. Berezin and M. Okhrimenko, Classical Quantum Gravity 18, 2195(2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. I. Guendelman and I. Shilon, Classical Quantum Gravity 26, 045 007 (2009).

    Article  MathSciNet  Google Scholar 

  56. I. D. Novikov, Astron. Zh. 43, 911 (1966) [Sov. Astron. 43,731(1967)].

    ADS  Google Scholar 

  57. V. A. Berezin, V. A. Kuz—min, and I. I. Tkachev, Zh. Éksp. Teor. Fiz. 93 (4), 1159 (1987) [Sov. Phys. JETP 66 (4), 654 (1987)].

    MathSciNet  ADS  Google Scholar 

  58. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983; Mir, Moscow, 1986), p. 209.

    MATH  Google Scholar 

  59. R. F. Tooper, Astrophys. J. 142, 1541 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  60. Ya. B. Zel—dovich, Zh. Éksp. Teor. Fiz. 41, 1609 (1961) [Sov. Phys. JETP 14, 1143 (1961)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Dokuchaev.

Additional information

Original Russian Text © V.I. Dokuchaev, S.V. Chernov, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ-Fiziki, 2010, Vol. 137, No. 1, pp. 13–23.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dokuchaev, V.I., Chernov, S.V. Dynamics of a thin shell in the Reissner—Nordström metric. J. Exp. Theor. Phys. 110, 7–16 (2010). https://doi.org/10.1134/S1063776110010024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110010024

Keywords

Navigation