Skip to main content
Log in

Brownian motion in granular gases of viscoelastic particles

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory is developed of Brownian motion in granular gases (systems of many macroscopic particles undergoing inelastic collisions), where the energy loss in inelastic collisions is determined by a restitution coefficient ɛ. Whereas previous studies used a simplified model with ɛ = const, the present analysis takes into account the dependence of the restitution coefficient on relative impact velocity. The granular temperature and the Brownian diffusion coefficient are calculated for a granular gas in the homogeneous cooling state and a gas driven by a thermostat force, and their variation with grain mass and size and the restitution coefficient is analyzed. Both equipartition principle and fluctuation-dissipation relations are found to break down. One manifestation of this behavior is a new phenomenon of “relative heating” of Brownian particles at the expense of cooling of the ambient granular gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Brown, Philos. Mag. 4, 161 (1828).

    Google Scholar 

  2. A. Einstein, Ann. Phys. (Weinheim) 17, 549 (1905).

    ADS  Google Scholar 

  3. M. Smoluchowski, Ann. Phys. (Weinheim) 21, 756 (1906).

    Google Scholar 

  4. P. Langevin, C. R. Hebd. Seances Acad. Sci. 146, 530 (1908).

    MATH  Google Scholar 

  5. J. L. Lebowitz and P. Resibois, Phys. Rev. A: At., Mol., Opt. Phys. 139, 1101 (1965).

    MathSciNet  ADS  Google Scholar 

  6. L. Bocquet and J.-P. Hansen, NATO ASI Ser. 371, 1 (2000).

    Google Scholar 

  7. N. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular Gases (Oxford University Press, Oxford, 2004).

    MATH  Google Scholar 

  8. J. J. Brey, M. J. Ruiz-Montero, R. Garcia-Rojo, and J. W. Dufty, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 7174 (1999).

    Google Scholar 

  9. J. W. Dufty and J. J. Brey, New J. Phys. 7, 20 (2005).

    Article  Google Scholar 

  10. A. Santos and J. W. Dufty, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 051 305 (2001).

    Google Scholar 

  11. H. Hinrichsen and D. E. Wolf, The Physics of Granular Media (Wiley, Berlin, 2004).

    Book  Google Scholar 

  12. I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Pöschel and S. Luding, Lect. Notes Phys. 564, (2001).

  14. T. Pöschel and N. V. Brilliantov, Lect. Notes Phys. 624 (2003).

  15. R. Greenberg and A. Brahic, Planetary Rings (University of Arizona Press, Tucson, AZ, United States, 1984).

    Google Scholar 

  16. R. D. Wildman and D. J. Parker, Phys. Rev. Lett. 88, 064 301 (2002).

    Article  Google Scholar 

  17. K. Feitosa and N. Menon, Phys. Rev. Lett. 88, 198301 (2002).

    Article  ADS  Google Scholar 

  18. I. S. Aranson and J. S. Olafsen, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 66, 061302 (2002).

    Google Scholar 

  19. F. Rouyer and N. Menon, Phys. Rev. Lett. 85, 3676 (2000).

    Article  ADS  Google Scholar 

  20. W. Losert, D. G. W. Cooper, J. Delour, A. Kudrolli, and J. P. Gollub, Chaos 9, 682 (1999).

    Article  MATH  ADS  Google Scholar 

  21. W. Goldsmit, The Theory and Physical Behavior of Colliding Solids (Arnold, London, 1960).

    Google Scholar 

  22. F. G. Bridges, A. Hatzes, and D. N. C. Lin, Nature (London) 309, 333 (1984).

    Article  ADS  Google Scholar 

  23. G. Kuwabara and K. Kono, Jpn. J. Appl. Phys., Part 1 26, 1230 (1987).

    Article  Google Scholar 

  24. T. Tanaka, T. Ishida, and Y. Tsuji, Trans. Jpn. Soc. Mech. Eng. 57, 456 (1991).

    Google Scholar 

  25. R. Ramirez, T. Pöschel, N. V. Brilliantov, and T. Schwager, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 4465 (1999).

    Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1965; Oxford University Press, Oxford, 1965).

    Google Scholar 

  27. N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Poeschel, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 53, 5382 (1996).

    Google Scholar 

  28. T. C. van Noije, M. H. Ernst, and R. Brito, Physica A (Amsterdam) 251, 266 (1998).

    Google Scholar 

  29. N. V. Brilliantov and T. Pöschel, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 61, 5573 (2000).

    Google Scholar 

  30. T. P. C. van Noije and M. H. Ernst, Granular Matter 1, 57 (1998).

    Article  Google Scholar 

  31. A. Goldshtein and M. Shapiro, J. Fluid. Mech. 282, 75 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. S.H. Noskowicz, O. Bar-Lev, D. Serero, and I. Goldhirsch, Europhys. Lett. 79, 60 001 (2007).

    Article  MathSciNet  Google Scholar 

  33. S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases (Cambridge University Press, New York, 1970).

    Google Scholar 

  34. A. S. Bodrova and N. V. Brilliantov, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 2, 25 (2009).

  35. A. S. Bodrova and N. V. Brilliantov, Physica A (Amsterdam) 388, 3315 (2009).

    ADS  Google Scholar 

  36. J. M. Montanero and A. Santos, Granular Matter 2, 53 (1998).

    Article  Google Scholar 

  37. N. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1992).

    Google Scholar 

  38. A. Loskutov and A. Ryabov, J. Stat. Phys. 108, 995 (2002).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bodrova.

Additional information

Original Russian Text © A.S. Bodrova, N.V. Brilliantov, A.Yu. Loskutov, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 136, No. 6, pp. 1094–1104.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodrova, A.S., Brilliantov, N.V. & Loskutov, A.Y. Brownian motion in granular gases of viscoelastic particles. J. Exp. Theor. Phys. 109, 946–953 (2009). https://doi.org/10.1134/S1063776109120048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109120048

Keywords

Navigation