Skip to main content
Log in

Optical edge modes in photonic liquid crystals

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An analytic theory of localized edge modes in chiral liquid crystals (CLCs) is developed. Equations determining the edge-mode frequencies are found and analytically solved in the case of low decaying modes and are solved numerically for the problem parameter values typical for the experiment. The discrete edge-mode frequencies specified by the integer numbers n are located close to the stop-band edge frequencies outside the band. The expressions for the spatial distribution of the n’s mode field in a CLC layer and for its temporal decay are presented. The possibilities of a reduction of the lasing threshold due to the anomalously strong absorption effect are theoretically investigated for a distributed feedback lasing in CLCs. It is shown that a minimum of the threshold pumping wave intensity may be reached, generally, for the pumping wave propagating at an angle to the helical axis. However, for lucky values of the related parameters, it may be reached for the pumping wave propagating along the helical axis. The lowest threshold pumping wave intensity occurs for the lasing at the first low-frequency band-edge lasing mode and the pumping wave propagating at an angle to the spiral axis corresponding to the first angular absorption maximum of the anomalously strong absorption effect at the high-frequency edge of the stop band. The study is performed in the case of the average dielectric constant of the liquid crystal coinciding with the dielectric constant of the ambient material. Numerical calculations of the distributed feedback lasing threshold at the edge-mode frequencies are performed for typical values of the relevant parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Prog. Quantum Electron. 27, 369 (2003).

    Article  ADS  Google Scholar 

  2. I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, Pis’ma Zh. Éksp. Teor. Fiz. 32(1), 27 (1980) [JETP Lett. 32 (1), 24 (1980)].

    Google Scholar 

  3. B. Taheri, A. F. Muñoz, P. Palffy-Muhoray, and R. Twieg, Mol. Cryst. Liq. Cryst. 358, 73 (2001).

    Article  Google Scholar 

  4. M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, Adv. Mater. (Weinheim) 15, 974 (2003).

    Article  Google Scholar 

  5. M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, J. Appl. Phys. 103, 123 113 (2008).

    Article  Google Scholar 

  6. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, J. Appl. Phys. 97, 023 103 (2005).

    Article  Google Scholar 

  7. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, Appl. Phys. Lett. 86, 051107 (2005).

    Article  ADS  Google Scholar 

  8. H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, Adv. Mater. (Weinheim) 13, 1069 (2001).

    Article  Google Scholar 

  9. V. A. Belyakov, A. A. Gevorgian, O. S. Eritsian, and N. V. Shipov, Zh. Tekh. Fiz. 57(7), 1418 (1987) [Sov. Phys. Tech. Phys. 32 (7), 843 (1987)].

    Google Scholar 

  10. V. A. Belyakov and V. E. Dmitrienko, Sov. Sci. Rev., Sec. A 13, 80 (1989).

    Google Scholar 

  11. V. A. Belyakov, Mol. Cryst. Liq. Cryst. 453, 43 (2006).

    Article  Google Scholar 

  12. V. A. Belyakov, Ferroelectrics 364, 33 (2008).

    Article  Google Scholar 

  13. Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, Appl. Phys. Lett. 90, 091114 (2007).

    Article  ADS  Google Scholar 

  14. H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).

    Article  ADS  Google Scholar 

  15. A. Yariv and M. Nakamura, IEEE J. Quantum Electron. QE-13, 233 (1977).

    Article  ADS  Google Scholar 

  16. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).

    Article  ADS  Google Scholar 

  17. H. de Vries, Acta Crystallogr. 4, 219 (1951).

    Article  Google Scholar 

  18. E. I. Kats, Zh. Éksp. Teor. Fiz. 59, 1854 (1971) [Sov. Phys. JETP 32, 1004 (1971)].

    Google Scholar 

  19. V. A. Belyakov and A. S. Sonin, Optics of Cholesteric Liquid Crystals (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  20. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

    Google Scholar 

  21. V. A. Belyakov, Diffraction Optics of Complex Structured Periodic Media (Springer, New York, 1992), Chapter 4.

    Google Scholar 

  22. K. Funamoto, M. Ozaki, and K. Yoshino, Jpn. J. Appl. Phys., Part 2 42, L1523 (2003).

    Article  Google Scholar 

  23. V. A. Belyakov, I. W. Stewart, and M. A. Osipov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 051708 (2005).

    ADS  Google Scholar 

  24. V. A. Belyakov and V. E. Dmitrienko, Fiz. Tverd. Tela 15, 2724, 3540 (1973) [Sov. Phys. Solid States 15, 1811, 2365 (1973)].

    Google Scholar 

  25. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, Nat. Mater. 1, 111 (2002).

    Article  ADS  Google Scholar 

  26. V. A. Belyakov and N. V. Shipov, Zh. Éksp. Teor. Fiz. 82(4), 1159 (1982) [Sov. Phys. JETP 55 (4), 674 (1982)].

    Google Scholar 

  27. N. V. Shipov and V. A. Belyakov, Zh. Éksp. Teor. Fiz. 75(5), 1589 (1978) [Sov. Phys. JETP 48 (5), 802 (1978)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Belyakov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyakov, V.A., Semenov, S.V. Optical edge modes in photonic liquid crystals. J. Exp. Theor. Phys. 109, 687–699 (2009). https://doi.org/10.1134/S106377610910015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377610910015X

PACS numbers

Navigation