Skip to main content
Log in

Phase states and magnetic properties of iron nanoparticles in carbon nanotube channels

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structure, phase composition, and magnetic properties of carbon nanotubes filled with iron nanoparticles and obtained by thermolysis of a mixture of ferrocene and C60 fullerene or ferrocene and orthoxylene at a temperature of 800°C are investigated. Electron microscopy, X-ray diffraction, and Mössbauer spectroscopy data lead to the conclusion that carbon nanotubes are multilayer systems partially filled with iron nanoparticles and/or nanorods. Metallic inclusions in nanotube channels form α-Fe, γ-Fe, and Fe3C phases. The concentration of each phase in the samples is determined. It is shown that 10–20-nm iron clusters in nanotubes exhibit magnetic properties typical of bulk phases of iron. High elasticity of carbon nanotube walls facilitates stabilization of the high-temperature γ-Fe phase; the relative concentration of this phase in a sample can be increased by lowering the concentration of ferrocene in the initial reaction mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Lozovik and A. M. Popov, Usp. Fiz. Nauk 167(7), 751 (1997) [Phys.—Usp. 40 (7), 717 (1997)].

    Article  Google Scholar 

  2. A. V. Eletskiĭ, Usp. Fiz. Nauk 167(9), 945 (1997) [Phys.—Usp. 40 (9), 899 (1997)].

    Article  Google Scholar 

  3. M. Terrones, Annu. Rev. Mater. Res. 33, 419 (2003).

    Article  Google Scholar 

  4. F. Banhard, N. Grobert, M. Terrones, J.-C. Charlier, and P. M. Ajayan, Int. J. Mod. Phys. B 15, 4037 (2001).

    Article  ADS  Google Scholar 

  5. C. N. R. Rao, R. Sen, B. C. Satishkumar, and A. Govindaraj, Chem. Commun. 15, 1525 (1998).

    Article  Google Scholar 

  6. E. G. Rakov, Ross. Nanotekhnol. 3(9–10), 89 (2008) [Nanotechnol. Russ. 3 (9–10), 575 (2008)].

    Google Scholar 

  7. S. Huang, L. Dai, and A. W. H. Mau, J. Phys. Chem. B 103, 4223 (1999).

    Article  Google Scholar 

  8. X. Wang, W. Hu, Y. Liu, C. Long, Y. Xu, S. Zhou, D. Zhu, and L. Dai, Carbon 39, 1533 (2001).

    Article  Google Scholar 

  9. S. Liu, X. Tang, Y. Mastai, I. Felner, and A. Gedanken, J. Mater. Chem. 10, 2502 (2000).

    Article  Google Scholar 

  10. R. Sen, A. Govindaraj, and C. N. R. Rao, Chem. Phys. Lett. 267, 276 (1997).

    Article  ADS  Google Scholar 

  11. F. Villalpando-Páez, A. H. Romero, E. Muñoz-Sandoval, L. M. Martìnez, H. Terrones, and M. Terrones, Chem. Phys. Lett. 386, 137 (2004).

    Article  ADS  Google Scholar 

  12. A. V. Eletskiĭ, Usp. Fiz. Nauk 172(4), 401 (2002) [Phys.—Usp. 45 (4), 369 (2002)].

    Article  Google Scholar 

  13. L. Gao, A. Peng, Z. Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, and B. Ding, Solid State Commun. 146, 380 (2008).

    Article  ADS  Google Scholar 

  14. N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P. Hare, H.W. Kroto, D. R. M. Walton, M. Terrones, H. Terrones, Ph. Redlich, M. Rühle, R. Escudero, and F. Morales, Appl. Phys. Lett. 75, 3363 (1999).

    Article  ADS  Google Scholar 

  15. S. V. Kolmogortsev, R. S. Iskhakov, E. A. Denisova, A.D. Balaev, V. G. Myagkov, N. V. Bulina, A. G. Kudashov, and A. V. Okotrub, Pis’ma Zh. Tekh. Fiz. 31(11), 12 (2005) [Tech. Phys. Lett. 31 (6), 454 (2005)].

    Google Scholar 

  16. H. Kim and W. Sigmund, Carbon 43, 1743 (2005).

    Article  Google Scholar 

  17. C. Müller, D. Golberg, A. Leonhardt, S. Hampel, and B. Büchner, Phys. Status Solidi A 203, 1064 (2006).

    Article  ADS  Google Scholar 

  18. T. Ruskov, S. Asenov, I. Spirov, C. Garcia, I. Mönch, A. Graff, R. Kozhuharova, A. Leonhardt, T. Mühl, M. Ritschel, C. M. Schneider, and S. Groudeva-Zotova, J. Appl. Phys. 96, 7514 (2004).

    Article  ADS  Google Scholar 

  19. T. Ruskov, I. Spirov, M. Ritschel, C. Müller, A. Leonhardt, and R. Ruskov, J. Appl. Phys. 100, 084326-1 (2006).

    Google Scholar 

  20. V. Pichot, P. Launois, M. Pinault, M. Mayne-L’Hermite, and C. Reynaud, Appl. Phys. Lett. 85, 473 (2004).

    Article  ADS  Google Scholar 

  21. J. F. Marco, J. R. Gancedo, A. Hernando, P. Crespo, C. Prados, J. M. Gonzàlez, N. Grobert, M. Terrones, D. R. M. Walton, and H. W. Kroto, Hyperfine Interact. 139/140, 535 (2002).

    Article  Google Scholar 

  22. A. G. Kudashov, A. G. Kurenya, A. V. Okotrub, A. V. Gusel’nikov, V. S. Danilovich, and L. G. Bulusheva, Zh. Tekh. Fiz. 77(12), 96 (2007) [Tech. Phys. 52 (12), 1627 (2007)].

    Google Scholar 

  23. A. V. Okotrub, L. G. Bulusheva, A. G. Kudashov, V. V. Belavin, and S. V. Komogortsev, Ross. Nanotekhnol. 3(3–4), 28 (2008) [Nanotechnol. Russ. 3 (3–4), 191 (2008)].

    Google Scholar 

  24. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, Chem. Phys. Lett. 315, 25 (1999).

    Article  ADS  Google Scholar 

  25. C. Prados, P. Crespo, J. M. Gonzàlez, A. Hernando, J. F. Marco, R. Gancedo, N. Grobert, M. Terrones, R. M. Walton, and H. W. Kroto, Phys. Rev. B: Condens. Matter 65, 113 405-1 (2002).

    Google Scholar 

  26. W. Lottermoser, A. K. Schaper, W. Treutmann, G. Redhammer, G. Tippelt, A. Lichtenberger, S.-U. Weber, and G. Amthauer, J. Phys. Chem. B 110, 9768 (2006).

    Article  Google Scholar 

  27. Phase Diagrams of Binary Metal Systems: A Handbook (3 Vols.), Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1, p. 717 [in Russian].

    Google Scholar 

  28. J. F. Shackelford, Introduction to Materials Science for Engineers, 2nd ed. (Macmillan, New York, 1990), p. 215.

    Google Scholar 

  29. W. Wong, P. E. Sheehan, and C. M. Lieber, Science (Washington) 277, 1971 (1997).

    Article  Google Scholar 

  30. H. Kim and W. Sigmund, J. Cryst. Growth 276, 594 (2005).

    Article  ADS  Google Scholar 

  31. W. Keune, R. Halbauer, U. Gonser, J. Lauer, and D. L. Williamson, J. Appl. Phys. 48, 2976 (1977).

    Article  ADS  Google Scholar 

  32. J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192, 2034 (1999).

    Article  Google Scholar 

  33. Yu. F. Krupyanskiĭ, and I. P. Suzdalev, Zh. Éksp. Teor. Fiz. 65(4), 1715 (1973) [Sov. Phys. JETP 38 (4), 859 (1973)].

    Google Scholar 

  34. I. P. Suzdalev, V. N. Buravtsev, Yu. V. Maksimov, A. A. Zharov, V. K. Imshennik, S. V. Novichikhin, and V. V. Matveev, J. Nanopart. Res. 5, 485 (2003).

    Article  Google Scholar 

  35. R. S. Iskhakov, S. V. Kolmogortsev, A. D. Balaev, and L. A. Chekanova, Pis’ma Zh. Éksp. Teor. Fiz. 72(6), 440 (2000) [JETP Lett. 72 (6), 304 (2000)].

    Google Scholar 

  36. R. S. Iskhakov, S. V. Kolmogortsev, Zh. M. Moroz, and E. E. Shalygina, Pis’ma Zh. Éksp. Teor. Fiz. 72(12), 872 (2000) [JETP Lett. 72 (12), 603 (2000)].

    Google Scholar 

  37. N. Grobert, W. K. Hsu, Y. O. Zhu, J. P. Hare, H.W. Kroto, D. R. M. Walton, M. Terrones, H. Terrones, Ph. Redlich, M. Rühle, R. Escudero, and F. Morales, Appl. Phys. Lett. 75, 3363 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Lyubutin.

Additional information

Original Russian Text © I.S. Lyubutin, K.V. Frolov, O.A. Anosova, V.S. Pokatilov, A.V. Okotrub, A.G. Kudashov, Yu.V. Shubin, L.G. Bulusheva, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 136, No. 2, pp. 302–310.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubutin, I.S., Frolov, K.V., Anosova, O.A. et al. Phase states and magnetic properties of iron nanoparticles in carbon nanotube channels. J. Exp. Theor. Phys. 109, 254–261 (2009). https://doi.org/10.1134/S1063776109080093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109080093

PACS numbers

Navigation