Skip to main content
Log in

Development of spatial coherence from an extended source in successive rotational shearing interferometers for achromatic stellar coronagraphy

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a new scheme of an achromatic nulling interferometer-coronagraph to gain a higher contrast in the star-planet model. Two successive rotational shearing interferometers improve the interference contrast limited by insufficient spatial coherence of a physically extended source, a star. The theory and simulations have been confirmed by an experiment. The theoretical value of the coronagraphic contrast has been improved from 104 to 1010 for an angular size of the extended source of 10−2λ/D, where λ is the wave-length and D is the telescope’s aperture diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, arXiv:astro-ph/0608506.

  2. Y. Rabbia, J. Gay, J.-P. Rivet, and J.-L. Schneider, Eur. Space Agency [Spec. Publ.], SP-522 (2003).

  3. J. T. Trauger and W. A. Traub, Nature (London) 446, 771 (2007).

    Article  ADS  Google Scholar 

  4. D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, Publ. Astron. Soc. Pac. 112, 1479 (2000).

    Article  ADS  Google Scholar 

  5. F. Roddier and C. Roddier, Publ. Astron. Soc. Pac. 109, 815 (1997).

    Article  ADS  Google Scholar 

  6. C. van der Avoort, A. Mieremet, S. Pereira, and J. Braat, Proc. SPIE—Int. Soc. Opt. Eng. 5491, 816 (2004).

    ADS  Google Scholar 

  7. J. Nishikawa, T. Kotani, N. Murakami, N. Baba, Y. Itoh, and M. Tamura, Astron. Astrophys. 435, 379 (2005).

    Article  ADS  Google Scholar 

  8. O. Guyon and M. Shao, Publ. Astron. Soc. Pac. 118, 860 (2006).

    Article  ADS  Google Scholar 

  9. P. Baudoz, J. Gay, and Y. Rabbia, Astron. Soc. Pac. Conf. Ser. 134, 254 (1998).

    ADS  Google Scholar 

  10. P. Baudoz, Y. Rabbia, and J. Gay, Astron. Astrophys., Suppl. Ser. 141, 319 (2000).

    Article  ADS  Google Scholar 

  11. P. Baudoz, A. Boccaletti, Y. Rabbia, and J. Gay, Publ. Astron. Soc. Pac. 117, 1004 (2004).

    Article  ADS  Google Scholar 

  12. A. Tavrov, Y. Tanaka, T. Shioda, T. Kurokawa, and M. Takeda, Proc. SPIE—Int. Soc. Opt. Eng. 5491, 824 (2004).

    ADS  Google Scholar 

  13. A. Tavrov, Y. Kobayashi, Y. Tanaka, T. Shioda, Y. Otani, T. Kurokawa, and M. Takeda, Opt. Lett. 30, 2224 (2005).

    Article  ADS  Google Scholar 

  14. A. Tavrov, J. Nishikawa, M. Tamura, L. Abe, K. Yokochi, T. Kurokawa, and M. Takeda, Appl. Opt. 46, 6885 (2007).

    Article  ADS  Google Scholar 

  15. J. Nishikawa, N. Murakami, L. Abe, T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, Proc. SPIE—Int. Soc. Opt. Eng. 6265, 62 653Q (2006).

    Google Scholar 

  16. P. Baudoz, Y. Rabbia, and J. Gay, Astron. Astrophys., Suppl. Ser. 141, 319 (2000).

    Article  ADS  Google Scholar 

  17. M. Francon and S. Mallick, Appl. Opt. 6, 873 (1967).

    Article  ADS  Google Scholar 

  18. S. Mallick, Appl. Opt. 6, 1403 (1967).

    Article  ADS  Google Scholar 

  19. A. V. Tavrov, Zh. Éksp. Teor. Fiz. 134(6), 1103 (2008) [JETP 107 (6), 942 (2008)].

    Google Scholar 

  20. A. Labeyrie, S. G. Lipson, and P. Nisenson, An Introduction to Optical Stellar Interferometry (Cambridge University Press, Cambridge, United Kingdom, 2006), Chap. 10.4, p. 325.

    Google Scholar 

  21. E. L. Lago and R. de la Fuente, Appl. Opt. 47, 372 (2008).

    Article  ADS  Google Scholar 

  22. L. Pueyo, M. G. Littman, J. Kasdin, R. Vanderbei, R. Belikov, and A. Give’on, Proc. SPIE—Int. Soc. Opt. Eng. 5903, 59 030L (2005).

    Google Scholar 

  23. S. B. Shaklan and J. J. Green, Appl. Opt. 45, 5143 (2006).

    Article  ADS  Google Scholar 

  24. P. Bordé and W. Traub, C. R. Phys. 8, 349 (2007); http://arxiv.org/PS-cache/arxiv//pdf/0709/0709.3739v1.pdf.

    Article  ADS  Google Scholar 

  25. J. Nishikawa, L. Abe, N. Murakami, and T. Kotani, Astron. Astrophys. 489, 1389 (2008).

    Article  ADS  Google Scholar 

  26. N. Zubko, N. Baba, S. Morisaki, and N. Murakami, Opt. Express 15, 12 189 (2007).

    Article  Google Scholar 

  27. B. Biller, L. Close, R. Lenzen, W. Brandner, D. McCarthy, E. Nielsen, and M. Hartung, Proc. SPIE—Int. Soc. Opt. Eng. 5490, 389 (2004).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tavrov.

Additional information

Original Russian Text © A.V. Tavrov, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 6, pp. 1109–1124.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavrov, A.V. Development of spatial coherence from an extended source in successive rotational shearing interferometers for achromatic stellar coronagraphy. J. Exp. Theor. Phys. 108, 963–976 (2009). https://doi.org/10.1134/S1063776109060065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109060065

PACS numbers

Navigation