Skip to main content
Log in

Squeezed states in the semiclassical limit

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A symplectically covariant quantum-mechanical uncertainty relation more accurate than previously known ones is derived for multidimensional systems. It is shown that the quantum-mechanical description of a linear Hamiltonian system in terms of squeezed states is completely equivalent to its description in terms of a phase-space distribution function. A new approach to the semiclassical limit is proposed, based on the use of squeezed states. By analyzing explicit formulas for squeezed states, a semiclassical asymptotic form of the solution to the Cauchy problem for a multidimensional Schrödinger equation is found in the limit of ħ → 0. The behavior of the semiclassical solution in the neighborhood of a caustic is analyzed in the one-dimensional case, and the phase shift across the caustic is determined. General properties and examples of squeezed states are discussed that point to the fundamental importance of squeezed states for developing a nonrelativistic quantum-mechanical description of a system of charged particles in an electromagnetic field in the dipole approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wigner, Phys. Rev. 40, 749 (1932).

    Article  MATH  ADS  Google Scholar 

  2. Y. S. Kim and E. P. Wigner, Phys. Rev. A: At., Mol., Opt. Phys. 38, 1159 (1988).

    MathSciNet  ADS  Google Scholar 

  3. Y. S. Kim and E. P. Wigner, Phys. Rev. A: At., Mol., Opt. Phys. 39, 2829 (1989).

    MathSciNet  ADS  Google Scholar 

  4. E. Schrödinger, Naturwissenschaften 14, 664 (1926).

    Article  ADS  Google Scholar 

  5. Coherent States in Quantum Theory, Ed. by V. I. Man’ko (Mir, Moscow, 1972) [in Russian].

    Google Scholar 

  6. V. V. Dodonov and V. I. Man’ko, in Invariants and the Evolution of Nonstationary Quantum Systems, Ed. by M. A. Markov (Proc. P. N. Lebedev Phys. Inst., Acad. Sci. USSR, Moscow, 1987), Vol. 183 [in Russian].

    Google Scholar 

  7. V. G. Bagrov and B. F. Samsonov, Zh. Éksp. Teor. Fiz. 109(4), 1105 (1996) [JETP 82 (4), 593 (1996)].

    Google Scholar 

  8. R. J. Glauber, One Hundred Years of Light Quanta (Nobel Lecture) (The Nobel Foundation, Stockholm, 2005).

    Google Scholar 

  9. V. V. Dodonov, M. A. Man’ko, V. I. Man’ko, and A. Vourdas, J. Russ. Laser Res. 28, 404 (2007).

    Article  Google Scholar 

  10. R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A: At., Mol., Opt. Phys. 37, 3028 (1988).

    MathSciNet  ADS  Google Scholar 

  11. V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, Phys. Rev. A: At., Mol., Opt. Phys. 50, 813 (1994).

    ADS  Google Scholar 

  12. D. Han, Y. S. Kim, and M. E. Noz, Phys. Rev. A: At., Mol., Opt. Phys. 37, 807 (1988); 40, 902 (1989).

    MathSciNet  ADS  Google Scholar 

  13. Leehwa Yeh, Phys. Rev. A: At., Mol., Opt. Phys. 47, 3587 (1993); V. A. Mironov, Zh. Éksp. Teor. Fiz. 123 (1), 32 (2003) [JETP 96 (1), 25 (2003)].

    ADS  Google Scholar 

  14. R. Zh. Glauber and V. I. Man’ko, Zh. Éksp. Teor. Fiz. 87(3), 790 (1984) [Sov. Phys. JETP 60 (3), 450 (1984)].

    MathSciNet  ADS  Google Scholar 

  15. K. N. Alekseev and D. S. Priĭmak, Zh. Éksp. Teor. Fiz. 113(1), 111 (1998) [JETP 86 (1), 61 (1998)].

    Google Scholar 

  16. E. C. G. Sudarshan, C. B. Chiu, and G. Bhamathi, Phys. Rev. A: At., Mol., Opt. Phys. 52, 43 (1995).

    MathSciNet  ADS  Google Scholar 

  17. D. A. Trifonov, J. Phys. A: Math. Gen. 30, 5941 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  18. N. V. Karelin and A. M. Lazaruk, Teor. Mat. Fiz. 117(3), 427 (1998) [Theor. Math. Phys. 117 (3), 1447 (1998)]; M. U. Karelin and A. M. Lazaruk, J. Phys. A: Math. Gen. 33, 6807 (2000); D. A. Trifonov and S. G. Donev, J. Phys. A: Math. Gen. 31, 8041 (1998).

    Google Scholar 

  19. W. Pauli, Handbuch der Physik, Vol. 24/1 (Springer, Berlin, 1926; Gostekhizdat, Moscow, 1947) [in German and in Russian].

    Google Scholar 

  20. V. P. Maslov and M. V. Fedoryuk, Semi-Classical Approximation in Quantum Mechanics (Nauka, Moscow, 1976; Reidel, Dordrecht, 1981).

    Google Scholar 

  21. V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1989; Springer, New York, 1997); A. T. Fomenko, Symplectic Geometry: Methods and Applications (Moscow State University, Moscow, 1988); V. I. Arnold and A. B. Givental’, Dynamical Systems, Vol. IV: Symplectic Geometry and Its Applications (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, Russia, 2000; Springer, New York, 2001).

    Google Scholar 

  22. J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Schrödinger, Collected Papers (Nauka, Moscow, 1976; Friedr Vieweg, Braunschweig, Germany, 1984).

    Google Scholar 

  24. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New York, 1950; Nauka, Moscow, 1986).

    Google Scholar 

  25. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, United States, 1955; Nauka, Moscow, 1964).

    MATH  Google Scholar 

  26. N. Bohr, Naturwissenschaften 16, 245 (1928); L. Landau and R. Peierls, Z. Phys. 69, 56 (1931).

    Article  ADS  Google Scholar 

  27. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1957; Mir, Moscow, 1961), Vol. 2.

    MATH  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Butterworth-Heinemann, Oxford, 1991).

    Google Scholar 

  29. L. D. Faddeev and O. A. Yakubovskii, Lectures on Quantum Mechanics for Mathematics Students (Leningrad State University, Leningrad, 1980; American Mathematical Society, Providence, RI, United States, 2009).

    Google Scholar 

  30. L. D. Landau, Z. Phys. 45, 430 (1927).

    Article  ADS  Google Scholar 

  31. D. I. Blokhintsev, Usp. Fiz. Nauk 122(4), 745 (1977) [Sov. Phys.—Usp. 20 (8), 683 (1977)].

    Google Scholar 

  32. G. S. Agarwal and E. Wolf, Phys. Rev. D: Part. Fields 2 2161, 2187 (1970).

    MathSciNet  ADS  Google Scholar 

  33. M. Born, W. Heisenberg, and P. Jordan, Z. Phys. 35, 557 (1926).

    Article  ADS  Google Scholar 

  34. E. Schrödinger, Phys. Rev. 28, 1049 (1926).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Alekseev.

Additional information

Original Russian Text © P.S. Alekseev, F.V. Moroseev, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 4, pp. 653–666.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, P.S., Moroseev, F.V. Squeezed states in the semiclassical limit. J. Exp. Theor. Phys. 108, 571–582 (2009). https://doi.org/10.1134/S1063776109040037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109040037

PACS numbers

Navigation