Skip to main content
Log in

Liquid-crystalline phases formed by DNA duplexes containing pyrophosphate groups

  • Tatistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied the interaction between synthetic DNA molecules containing pyrophosphate (PP) groups in various positions, which makes it possible to control the charge distribution along the DNA chain. The PP groups were either symmetrically arranged at the ends or at the center of DNA molecules or uniformly distributed along these molecules. It is shown that, similar to nonmodified DNA, the synthetic PP-modified DNA molecules can form cholesteric liquid crystals. Minima of the pair interaction potential are found, conditions of the symmetry of this potential are formulated, and the dependence of conformation angles on the effective charge is determined. The results of calculations show that the system exhibits polymorphism (i.e., several phases of cholesteric liquid crystals can exist in DNA solutions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager, Ann. N. Y. Acad. Sci. 51, 621 (1999).

    Google Scholar 

  2. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1977).

    Google Scholar 

  3. C. Robinson, Tetrahedron 13, 219 (1961).

    Article  Google Scholar 

  4. F. Livolant, J. Phys. (Paris) 47, 1605 (1986).

    Google Scholar 

  5. E. Raspaud, D. Durand, and F. Livolant, Biophys. J. 88, 392 (2004).

    Article  Google Scholar 

  6. E. Raspaud, J. Pelta, M. de Fruttos, and F. Livolant, Phys. Rev. Lett. 97, 068103-1 (2006).

    Google Scholar 

  7. Y. H. Kim, J. Phys. (Paris) 43, 559 (1982).

    Google Scholar 

  8. B. Samoroe, M. Osipov, I. Domini, and A. Bartolini, Int. J. Macromol. 15, 353 (1993).

    Article  Google Scholar 

  9. V. L. Golo, E. I. Kats, and I. P. Kikot’, Pis’ma Zh. Éksp. Teor. Fiz. 84(5), 334 (2006) [JETP Lett. 84 (5), 275 (2006)].

    Google Scholar 

  10. A. A. Kornyshev and S. Leikin, J. Chem. Phys. 107, 3656 (1997).

    Article  ADS  Google Scholar 

  11. V. L. Golo, E. I. Kats, and Yu. S. Volkov, Pis’ma Zh. Éksp. Teor. Fiz. 86(4), 311 (2007) [JETP Lett. 86 (4), 278 (278)].

    Google Scholar 

  12. S. A. Kuznetsova, M. G. Ivanovskaya, and Z. A. Shabarova, Bioorg. Khim. 16, 219 (1990).

    Google Scholar 

  13. S. A. Kuznetsova, I. É. Kanevskiĭ, V. A. Florent’ev, A. D. Mirzabekov, and Z. A. Shabarova, Mol. Biol. (Moscow) 28, 290 (1994).

    Google Scholar 

  14. S. A. Kuznetsova, M. Blumenfeld, M. Vasseur, and Z. A. Shabarova, Nucleosides Nucleotides 18, 1237 (1996).

    Article  Google Scholar 

  15. S. A. Kuznetsova, I. E. Kanevskii, T. S. Oretskaya, and Z. A. Shabarova, Bioorg. Khim. 22(7), 532 (1996) [Russ. J. Bioorg. Chem. 22 (7), 455 (1996)].

    Google Scholar 

  16. A. A. Purmal’, V. L. Drutsa, and Z. A. Shabarova, Bioorg. Khim. 10, 394 (1984).

    Google Scholar 

  17. M. V. Rogacheva, A. V. Bochenkova, S. A. Kuznetsova, M. K. Saparbaev, and A. V. Nemukhin, J. Phys. Chem. B. 111, 432 (2007).

    Article  Google Scholar 

  18. Z. A. Shabarova, G. Ya. Sheflyan, S. A. Kuznetsova, E. A. Kubareva, O. N. Sysoev, M. G. Ivanovskaya, and E. S. Gromova, Bioorg. Khim. 20, 413 (1994).

    Google Scholar 

  19. M. V. Rogacheva, M. K. Saparbaev, I. M. Afanasov, and S. A. Kuznetsova, Biochimie 87, 1079 (2005).

    Article  Google Scholar 

  20. M. Rogacheva, A. Ishchenko, M. Saparbaev, S. Kuznetsova, and V. Ogryzko, J. Biol. Chem. 281,32 353 (2006).

    Google Scholar 

  21. S. A. Kuznetsova, C. Clusel, E. Ugarte, I. Elias, M. Vasseur, M. Blumenfeld, and Z. A. Shabarova, Nucleic Acids Res. 24, 4783 (1996).

    Article  Google Scholar 

  22. A. A. Purmal, Z. A. Shabarova, and R. I. Gumport, Nucleic Acids Res. 20, 3713 (1992).

    Article  Google Scholar 

  23. G. Ya. Sheflyan, E. A. Kubareva, S. A. Kuznetsova, A. S. Karyagina, I. I. Nikol’skaya, E. S. Gromova, and Z. A. Shabarova, FEBS Lett. 390, 307 (1996).

    Article  Google Scholar 

  24. E. A. Kubareva, O. A. Fedorova, M. B. Gottikh, H. Tanaka, C. Malvy, and Z. A. Shabarova, FEBS Lett. 381, 35 (1996).

    Article  Google Scholar 

  25. L. Berti, A. Alessandrini, C. Menozzi, and P. Facci, J. Nanosci. Nanotechnol. 6(8), 2382 (2006).

    Article  Google Scholar 

  26. J. Sponer, J. Leszcynski, and P. Hobza, Biopolymers 61, 3 (2002).

    Article  Google Scholar 

  27. O. Punkkinen, A. Naji, R. Podgornik, I. Vattulainen, and P.-L. Hansen, Europhys. Lett. 82, 48001 (2008).

    Google Scholar 

  28. J. S. Schwinger, L. L. Deraad, K. A. Milton, and W. Y. Tsai, Classical Electrodynamics (Perseus, London, 1998).

    Google Scholar 

  29. Yu. M. Evdokimov, Zhidk. Krist. 3, 10 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Volkov.

Additional information

Original Russian Text © Yu.S. Volkov, V.L. Golo, E.I. Kats, S.A. Kuznetsova, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 3, pp. 559–566.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkov, Y.S., Golo, V.L., Kats, E.I. et al. Liquid-crystalline phases formed by DNA duplexes containing pyrophosphate groups. J. Exp. Theor. Phys. 108, 490–496 (2009). https://doi.org/10.1134/S1063776109030133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109030133

PACS numbers

Navigation