Skip to main content
Log in

Investigation of specific features of the lattice dynamics and the ferroelectric transition in perovskite crystals

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The specific features of diffuse X-ray scattering in BaTiO3, KNbO3, and PbTiP3 perovskite crystals have been investigated. The former two perovskite compounds in cubic, tetragonal, and orthorhombic phases exhibit anomalous sheets due to diffuse X-ray scattering, whereas no similar sheets are observed in the case of diffuse X-ray scattering in PbTiO3. For these compounds, the phonon spectra are calculated in the quasi-harmonic approximation within the polarizable-shell model, and the mechanism of stabilization of the soft mode above the temperature of the phase transition to the ferroelectric state is considered. It is demonstrated that, in the cubic phase of BaTiO3 and KNbO3 crystals, there exist quasi-one-dimensional “soft” modes of vibrations of ions in M-O-M-O- chains, where M = Ti or Nb. In PbTiO3, this feature of the soft mode has not been revealed. The pair correlation functions of simultaneous atomic displacements in BaTiO3, KNbO3, and PbTiO3 are determined and used to calculate the intensity of diffuse X-ray scattering. The results obtained are in good agreement with experimental data. This is a strong argument in support of the hypothesis that the specific features of diffuse scattering are associated with the existence of quasi-one-dimensional correlations of atomic displacements in the soft optical mode and that the ferroelectric transition in perovskites is a displacive ferroelectric phase transition. The possible influence of the specific features revealed in the phonon spectra of the perovskite crystals on the processes of nuclear magnetic resonance and X-ray absorption (extended X-ray absorption fine structure spectra) is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectric and Related Materials (Clarendon, Oxford, 1977).

    Google Scholar 

  2. Ferroelectrics and Related Materials, Ed. by G. A. Smolenskii (Gordon and Breach, New York, 1984).

    Google Scholar 

  3. R. Comes, M. Lambert, and A. Guinier, Solid State Commun. 6, 715 (1968).

    Article  ADS  Google Scholar 

  4. R. Comes, M. Lambert, and A. Guinier, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 26, 244 (1970).

    Article  ADS  Google Scholar 

  5. A. Hüller, Z. Phys. 220, 145 (1969).

    Article  ADS  Google Scholar 

  6. A. Hüller, Solid State Commun. 7, 589 (1969).

    Article  ADS  Google Scholar 

  7. B. E. Warren, X-Ray Diffraction (Dover, New York, 1969).

    Google Scholar 

  8. M. Holma, N. N. Takesue, and H. Chen, Ferroelectrics 164, 237 (1995).

    Article  Google Scholar 

  9. N. Takesue, M. Maglione, and H. Chen, Phys. Rev. B: Condens. Matter 51, 6696 (1995).

    ADS  Google Scholar 

  10. J. Harada, J. D. Axe, and G. Shirane, Phys. Rev. B: Solid State 4, 155 (1971).

    ADS  Google Scholar 

  11. B. Ravel, E. A. Stern, R. I. Vedrinskii, and V. L. Kraizman, Ferroelectrics 206–207, 407 (1998).

    Article  Google Scholar 

  12. M. I. Bell, K. H. Kim, and W. T. Elam, Ferroelectrics 120, 103 (1991).

    Google Scholar 

  13. N. Sicron, B. Ravel, Y. Yacoby, E. A. Stern, F. Dogan, and J. J. Rehr, Phys. Rev. B: Condens. Matter 50, 13168 (1994).

    ADS  Google Scholar 

  14. B. Zalar, V. V. Lagute, and R. Blinc, Phys. Rev. Lett. 90, 037601 (2003).

    Google Scholar 

  15. B. D. Chapman, E. A. Stern, S.-W. Han, J. O. Cross, G. T. Seidler, V. Gavrilyatchenko, R. V. Vedrinskii, and V. L. Kraizman, Phys. Rev. B: Condens. Matter 71, 020102(R) (2005).

  16. O. E. Kvyatkovskioe, Fiz. Tverd. Tela (St. Petersburg) 43(8), 1345 (2001) [Phys. Solid State 43 (8), 1401 (2001)].

    Google Scholar 

  17. O. E. Kvyatkovskioe and E. G. Maksimov, Usp. Fiz. Nauk 154(1), 3 (1988) [Sov. Phys.—Usp. 31 (1), 1 (1988)].

    Google Scholar 

  18. E. G. Maksimov, V. I. Zinenko, N. E. Zamkova, Usp. Fiz. Nauk 174(11), 1145 (2004) [Phys.—Usp. 47 (11), 1075 (2004)].

    Article  Google Scholar 

  19. R. J. Glauber, Phys. Rev. 98, 1692 (1955).

    Article  MATH  ADS  Google Scholar 

  20. R. A. Cowley, Phys. Rev. 134, A981 (1964).

    Article  ADS  Google Scholar 

  21. H. Bilz, G. Benedek, and A. Bussman-Holder, Phys. Rev. B: Condens. Matter 35, 4840 (1987).

    ADS  Google Scholar 

  22. D. Khatib, R. Migoni, G. E. Kugel, and L. Godefroy, J. Phys.: Condens. Matter 1, 9811 (1989).

    Article  ADS  Google Scholar 

  23. M. Sepliarsky, M. G. Stachiotti, and R. Migoni, Phys. Rev. B: Condens. Matter 56, 566 (1997).

    ADS  Google Scholar 

  24. S. Tinte, M. G. Stachiotti, M. Sepliarsky, R. L. Migoni, and C. O. Rodriguez, J. Phys.: Condens. Matter 11, 9679 (1999).

    Article  ADS  Google Scholar 

  25. E. G. Maksimov, N. L. Matsko, S. V. Ebert, and M. V. Magnitskaya, Ferroelectrics 354, 19 (2007).

    Article  Google Scholar 

  26. http://ivec.org/GULP.

  27. R. Yu and H. Krakauer, Phys. Rev. Lett. 74, 4067 (1995).

    Article  ADS  Google Scholar 

  28. Ph. Ghosez, E. Cockayne, U. W. Waghmare, and K. M. Rabe, Phys. Rev. B: Condens. Matter 60, 836 (1999).

    ADS  Google Scholar 

  29. J. D. Axe, Phys. Rev. 157, 429 (1967).

    Article  ADS  Google Scholar 

  30. W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (1994).

    Article  ADS  Google Scholar 

  31. Y. Luspin, J. L. Servoin, and F. Gervais, J. Phys. C: Solid State Phys. 13, 3761 (1980).

    Article  ADS  Google Scholar 

  32. M. D. Fontana, G. Metrat, J. Servoin, and F. Gervais, J. Phys. C: Solid State Phys. 17, 483 (1984).

    Article  ADS  Google Scholar 

  33. M. Holma and H. Chen, J. Phys. Chem. Solids 57, 1449 (1996).

    Article  Google Scholar 

  34. G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, Phys. Rev. B: Solid State 2, 155 (1970).

    ADS  Google Scholar 

  35. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Naukova Dumka, Kiev, 1984; Springer, Berlin, 1996).

    Google Scholar 

  36. R. A. Cowley, Adv. Phys. 12, 421 (1963).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Matsko.

Additional information

Original Russian Text © E.G. Maksimov, N.L. Matsko, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 3, pp. 498–509.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, E.G., Matsko, N.L. Investigation of specific features of the lattice dynamics and the ferroelectric transition in perovskite crystals. J. Exp. Theor. Phys. 108, 435–446 (2009). https://doi.org/10.1134/S106377610903008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377610903008X

PACS numbers

Navigation