Skip to main content
Log in

The Velikhov and anti-Velikhov effects in the theory of magnetorotational instability

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory of magnetorotational instability (MRI) allowing an equilibrium plasma pressure gradient and nonaxisymmetry of perturbations is developed. This approach reveals that in addition to the Velikhov effect driving the MRI due to negative rotation frequency profile, dΘ2/dr < 0, there is an opposite effect (the anti-Velikhov effect) weakening this driving (here, Θ is the rotation frequency and r is the radial coordinate). It is shown that in addition to the Velikhov mechanism, two new mechanisms of MRI driving are possible, one of which is due to the pressure gradient squared and the other is due to the product of the pressure and density gradients. The analysis includes both the one-fluid magnetohydrodynamic plasma model and the kinetics allowing collisionless effects. In addition to the pure plasma containing ions and electrons, the dusty plasma is considered. The charged dust effect on stability is analyzed using the approximation of immobile dust. In the presence of dust, a term with the electric field appears in the one-fluid equation of plasma motion. This electric field affects the equilibrium plasma rotation and also gives rise to a family of instabilities of the rotating plasma, called the dust-induced rotational instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Velikhov, Zh. Éksp. Teor. Fiz. 36, 1398 (1959) [Sov. Phys. JETP. 9, 995 (1959)].

    Google Scholar 

  2. S. Chandrasekhar, Proc. Natl. Acad. Sci. USA 46, 253 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).

    Article  ADS  Google Scholar 

  4. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  5. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, V. S. Tsypin, N. N. Erokhin, N. S. Erokhin, S. V. Konovalov, E. A. Pashitskii, A. V. Stepanov, S. V. Vladimirov, and R. M. O. Galváo, Zh. Éksp. Teor. Fiz. 133(1), 183 (2008) [JETP 106 (1), 154 (2008).

    Google Scholar 

  6. H. Ji, P. Kronberg, S. C. Prager, and D. A. Uzdensky, Phys. Plasmas 15, 058 302 (2008).

    Google Scholar 

  7. D. Hughes, R. Rosner, and N. Weiss, The Solar Tachocline (Cambridge University Press, Cambridge, 2007), p. 382.

    Google Scholar 

  8. M. Tobias, P. H. Diamond, and D. W. Hughes, Astrophys. J. Lett. 667, L113 (2007).

    Article  ADS  Google Scholar 

  9. E. Frieman and N. Rotenberg, Rev. Mod. Phys. 32, 898 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. E. Hameiri, J. Math. Phys. 22, 2080 (1981).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. A. Bondeson, R. Iacono, and A. Bhattacharjee, Phys. Fluids 30, 2167 (1987).

    Article  MATH  ADS  Google Scholar 

  12. R. Keppens, F. Casse, and J. P. Goedbloed, Astrophys. J. 569, 1121 (2002).

    Article  Google Scholar 

  13. W. T. Kim and E. C. Ostriker, Astrophys. J. 540, 372 (2000).

    Article  ADS  Google Scholar 

  14. O. Blaes and A. Socrates, Astrophys. J. 596, 509 (2003).

    Article  ADS  Google Scholar 

  15. E. Quataert, W. Dorland, and G. W. Hammett, Astrophys. J. 577, 533 (2002).

    Article  ADS  Google Scholar 

  16. P. Sharma, G. W. Hammett, and E. Quataert, Astrophys. J. 596, 1121 (2003).

    Article  ADS  Google Scholar 

  17. P. Sharma, G. W. Hammett, E. Quataert, and J. M. Stone, Astrophys. J. 637, 952 (2006).

    Article  ADS  Google Scholar 

  18. K. Ferriere, Space Sci. Rev. 122, 247 (2006).

    Article  ADS  Google Scholar 

  19. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, N. N. Erokhin, N. S. Erokhin, and V. S. Tsypin, Zh. Éksp. Teor. Fiz. 133(2), 429 (2008) [JETP 106 (2), 371 (2008)].

    Google Scholar 

  20. A. B. Mikhailovskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1967), Vol. 3, p. 158.

    Google Scholar 

  21. A. B. Mikhailovskii, Theory of Plasma Instabilities (Consultants Bureau, New York, 1974), Vol. 1.

    Google Scholar 

  22. A. B. Mikhailovskii, Theory of Plasma Instabilities (Consultants Bureau, New York, 1974), Vol. 2.

    Google Scholar 

  23. A. B. Mikhailovskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1975), Vol. 6, p. 77.

    Google Scholar 

  24. A. B. Mikhailovskii, Electromagnetic Instabilities in an Inhomogeneous Plasma (Institute of Physics, Bristol, United Kingdom, 1992).

    Google Scholar 

  25. C. K. Goertz, Rev. Geophys. 27, 271 (1989).

    Article  ADS  Google Scholar 

  26. S. V. Vladimirov and V. N. Tsytovich, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 58, 2415 (1998).

    Google Scholar 

  27. F. Verheest, Waves in Dusty Space Plasmas (Kluwer, Dordrecht, The Netherlands, 2000).

    Google Scholar 

  28. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, United Kingdom, 2002).

    Google Scholar 

  29. O. G. Onishchenko, O. A. Pokhotelov, R. Z. Sagdeev, V. P. Pavlenko, L. Stenflo, P. K. Shukla, and V. V. Zolotukhin, Phys. Plasmas 9, 1539 (2002).

    Article  ADS  Google Scholar 

  30. O. G. Onishchenko, O. A. Pokhotelov, R. Z. Sagdeev, L. Stenflo, V. P. Pavlenko, K. Shukla, and V. V. Zolotukhin, Phys. Plasmas 10, 69 (2003).

    Article  ADS  Google Scholar 

  31. I. Kourakis and P. K. Shukla, Phys. Plasmas 10, 3459 (2003).

    Article  ADS  Google Scholar 

  32. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005).

    MATH  Google Scholar 

  33. B. P. Pandey and S. V. Vladimirov, Phys. Plasmas 14, 052105, (2007).

    Article  ADS  Google Scholar 

  34. S. I. Krasheninnikov, V. I. Shevchenko, and P. K. Shukla, Phys. Lett. A 361, 133 (2007).

    Article  MATH  ADS  Google Scholar 

  35. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  36. J. Winter, J. Nucl. Mater. 266–268, 228 (1999).

    Article  Google Scholar 

  37. J. Winter, Phys. Plasmas 7, 3862, (2000).

    Article  ADS  MathSciNet  Google Scholar 

  38. J. Winter, Plasma Phys. Controlled Fusion 46, B583 (2004).

    Article  Google Scholar 

  39. F. Yamoto and M. Sekiya, Icarus 170, 180 (2004).

    Article  ADS  Google Scholar 

  40. C. P. Dullemond and C. Dominik, Astron. Astrophys. 434, 971 (2005).

    Article  MATH  ADS  Google Scholar 

  41. L. Barriere-Fouchet, J. F. Gonzalez, J. R. Murray, R. J. Humble and S. T. Maddison, Astron. Astrophys. 443, 185 (2005).

    Article  ADS  Google Scholar 

  42. H. Nomura and Y. Nakagawa, Astrophys. J. 640, 1099 (2006).

    Article  ADS  Google Scholar 

  43. C. W. Ormel, M. Spaans, and A. G. G. M. Tielens, Astron. Astrophys. 461, 215 (2007).

    Article  ADS  Google Scholar 

  44. A. B. Mikhailovskii, S. V. Vladimirov, J. G. Lominadze, V. S. Tsypin, A. P. Churikov, N. N. Erokhin, and R. M. O. Galváo, Phys. Plasmas 15, 014504 (2008).

    Google Scholar 

  45. A. B. Mikhailovskii, Instabilities in a Confined Plasma (Institute of Physics, Bristol, United Kingdom, 1998).

    Google Scholar 

  46. N. F. Cramer and S. V. Vladimirov, Phys. Plasmas 3, 4740 (1996).

    Article  ADS  Google Scholar 

  47. N. F. Cramer, L. K. Yeung, and S. V. Vladimirov, Phys. Plasmas 5, 3126 (1998).

    Article  Google Scholar 

  48. A. B. Mikhailovskii, J. G. Lominadze, R. M. O. Galváo, A. P. Churikov, O. A. Kharshiladze, N. N. Erokhin, and C. H. S. Amador, Phys. Plasmas 15, 052 109 (2008).

    Google Scholar 

  49. A. B. Mikhailovskii, J. G. Lominadze, R. M. O. Galváo, A. P. Churikov, N. N. Erokhin, A. I. Smolyakov, and V. S. Tsypin, Phys. Plasmas 15, 052 103 (2008).

    Google Scholar 

  50. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, V. D. Pustovitov, S. V. Konovalov, and O. A. Kharshiladze, Plasma Phys. Controlled Fusion 50, 085012 (2008).

    Google Scholar 

  51. K. Hansen, A. F. Almagri, D. Craig, D. J. Den Hartog, C. C. Hegna, S. C. Prager, and J. S. Sarff, Phys. Rev. Lett. 85, 3408 (2000).

    Article  ADS  Google Scholar 

  52. M. Wardle, Mon. Not. R. Astron. Soc. 307, 849 (1999).

    Article  ADS  Google Scholar 

  53. S. A. Balbus and C. Terquem, Astrophys. J. 552, 235 (2001).

    Article  ADS  Google Scholar 

  54. T. Sano and J. M. Stone, Astrophys. J. 570, 314 (2002).

    Article  ADS  Google Scholar 

  55. T. Sano and J. M. Stone, Astrophys. J. 577, 534 (2002).

    Article  ADS  Google Scholar 

  56. P. D. Mininni, D. O. Gomez, and S. M. Mahajan, Astrophys. J. 584, 1120 (2003).

    Article  ADS  Google Scholar 

  57. S. J. Desch, Astrophys. J. 608, 509 (2004).

    Article  ADS  Google Scholar 

  58. L. L. Kitchatinov and G. Rudiger, Astron. Astrophys. 424, 505 (2004).

    Article  ADS  Google Scholar 

  59. G. Rudiger and D. Shalybkov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 69, 016 303 (2004).

  60. G. Rudiger and L. L. Kitchatinov, Astron. Astrophys. 434, 629 (2005).

    Article  ADS  Google Scholar 

  61. V. Urpin and G. Rudiger, Astron. Astrophys. 437, 23 (2005).

    Article  ADS  Google Scholar 

  62. A. B. Mikhailovskii, J. G. Lominadze, R. M. O. Galváo, S. V. Vladimirov, A. P. Churikov, N. N. Erokhin, A. I. Smolyakov, and V. S. Tsypin, Phys. Plasmas 14, 112 108 (2007).

    Google Scholar 

  63. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, V. D. Pustovitov, N. N. Erokhin, V. S. Tsypin, and R. M. O. Galváo, Fiz. Plazmy (Moscow) 34(8), 736 (2008) [Plasma Phys. Rep. 34 (8), 678 (2008)].

    Google Scholar 

  64. J. H. Krolik and E. G. Zweibel, Astrophys. J. 644, 651 (2006).

    Article  ADS  Google Scholar 

  65. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, N. N. Erokhin, and V. S. Tsypin, Phys. Lett. A 372, 49 (2007).

    Article  ADS  Google Scholar 

  66. T. Lindgren, J. Larsson, and L. Stenflo, Plasma Phys. 24, 1177 (1982).

    Article  ADS  Google Scholar 

  67. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, N. N. Erokhin, V. S. Tsypin, A. I. Smolyakov, and R. M. O. Galváo, Phys. Plasmas 14, 082302 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Lominadze.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailovskii, A.B., Lominadze, J.G., Churikov, A.P. et al. The Velikhov and anti-Velikhov effects in the theory of magnetorotational instability. J. Exp. Theor. Phys. 107, 1061–1078 (2008). https://doi.org/10.1134/S1063776108120157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108120157

PACS numbers

Navigation