Skip to main content
Log in

Saturation of relativistic Weibel instability and the formation of stationary current sheets in collisionless plasma

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied the features of formation and the possible stationary structures of a self-consistent magnetic field in a relativistic collisionless plasma, which are characteristic of a simple geometry of the Weibel instability that is well known in the nonrelativistic case. The universal condition is established, the growth rate is determined, and the criteria of saturation of the Weibel instability are analyzed for a broad class of anisotropic particle distribution functions (for definiteness, in application to an electron-positron plasma). A nonlinear equation of the Grad-Shafranov type describing the potential current structures is derived and its solutions are analytically studied. Special attention is paid to spatially harmonic, nonlinear current configurations with parameters determined by the properties of the initial homogeneous plasma subject to the Weibel instability. It is demonstrated that the magnetic field energy density in the obtained solutions (both harmonic and nonharmonic) can be comparable with the kinetic energy density of plasma particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Haines, Can. J. Phys. 64, 912 (1986).

    ADS  Google Scholar 

  2. A. Brandenburg and K. Subramanian, Phys. Rep. 417, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  3. V. P. Krainov, J. Phys. B: At., Mol. Opt. Phys. 36, 3187 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  4. B. V. Somov, Plasma Astrophysics, Part II: Reconnection and Flares (Springer, New York, 2006).

    Google Scholar 

  5. F. Califano, D. D. Sarto, and F. Pegoraro, Phys. Rev. Lett. 96, 105 008 (2006).

    Google Scholar 

  6. R. C. Davidson, D. A. Hammer, I. Haber, et al., Phys. Fluids 15, 2 (1972).

    Google Scholar 

  7. P. H. Yoon and A. T. Y. Lui, J. Geophys. Res., [Space Phys.] 110, 01 202 (2005).

    Google Scholar 

  8. Y. Lyubarsky and D. Eichler, Astrophys. J. 647, 1250 (2006).

    Article  ADS  Google Scholar 

  9. T. N. Kato, Phys. Plasmas 12, 080 705 (2005).

  10. F. Califano, F. Pegoraro, S. V. Bulanov, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 7048 (1998).

    Google Scholar 

  11. T.-Y. B. Yang, J. Arons, and A. B. Langdon, Phys. Plasmas 1, 3059 (1994).

    Article  ADS  Google Scholar 

  12. M. Lazar, R. Schlickeiser, and P. K. Shukla, Phys. Plasmas 13, 102 107 (2006).

    Google Scholar 

  13. M. Medvedev and A. Loeb, Astrophys. J. 526, 697 (1999).

    Article  Google Scholar 

  14. E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).

    Article  ADS  Google Scholar 

  15. B. D. Fried, Phys. Fluids 2, 337 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  16. F. D. Kahn, J. Fluid Mech. 14, 321 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  17. P. H. Yoon and R. C. Davidson, Phys. Rev. A: At., Mol., Opt. Phys. 35, 2718 (1987).

    ADS  Google Scholar 

  18. P. H. Yoon, Phys. Fluids B 1, 1336 (1989).

    Article  ADS  Google Scholar 

  19. U. Schaefer-Rolffs and R. Schlickeiser, Phys. Plasmas 12, 022 104 (2005).

    Google Scholar 

  20. L. N. Tshintsadze and P. K. Shukla, arXiv:0712.2874.

  21. A. Yu. Romanov, V. P. Silin, and S. A. Uryupin, Zh. Éksp. Teor. Fiz. 126(4), 843 (2004) [JETP 99 (4), 727 (2004)].

    Google Scholar 

  22. A. Spitkovsky, arXiv:0802.3216.

  23. K.-I. Nishikawa, P. E. Hardee, C. B. Hededal, et al., Astrophys. J. 642, 1267 (2006).

    Article  ADS  Google Scholar 

  24. L. O. Silva, R. A. Fonseca, J. W. Tonge, et al., Astrophys. J. 596, L121 (2003).

    Article  ADS  Google Scholar 

  25. R. A. Fonseca, L. O. Silva, J. W. Tonge, et al., Phys. Plasmas 10, 1979 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  26. V. Yu. Martyanov, Vl. V. Kocharovsky, V. V. Kocharovsky, et al., in Proceedings of the International Conference “Frontiers of Nonlinear Physics” (Nizhni Novgorod, Russia, 2005), p. 647.

  27. V. Yu. Martyanov, E. V. Derishev, V. V. Kocharovsky, et al., AIP Conf. Proc. 801, 357 (2005).

    Article  ADS  Google Scholar 

  28. I. B. Bernstein, J. M. Greene, and M. D. Kruskal, Phys. Rev. 108, 546 (1957).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. H. Schamel, Phys. Plasmas 7, 4831 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  30. C. S. Ng and A. Bhattacharjee, Phys. Rev. Lett. 95, 245004 (2005).

    Article  ADS  Google Scholar 

  31. L.-J. Chen, J. Picket, P. Kintner, et al., J. Geophys. Res., [Space Phys.] 110, 09 211 (2005).

    Google Scholar 

  32. K. Schindler and J. Birn, J. Geophys. Res. [Space Phys.] 107, 1193 (2002).

    Article  ADS  Google Scholar 

  33. A. Suzuki and T. Shigeyama, arXiv:0803.3843v1.

  34. N. Attico and F. Pegoraro, Phys. Plasmas 6, 767 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  35. I. Silin, J. Büchner, and L. Zelenyi, Phys. Plasmas 9, 1104 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Spitkovsky, Astrophys. J. 673, L39 (2008).

    Article  ADS  Google Scholar 

  37. U. Keshet, B. Katz, A. Spitkovsky, et al., arXiv:0802.3217.

  38. V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media (Gosatomizdat, Moscow, 1961) [in Russian].

    Google Scholar 

  39. R. Schlickeiser, Phys. Plasmas 11, 5532 (2004).

    Article  ADS  Google Scholar 

  40. U. Schaefer-Rolffs, I. Lerche, and R. Schlickeiser, Phys. Plasmas 13, 012 107 (2006).

    Google Scholar 

  41. J. Wiersma and A. Achterberg, Astron. Astrophys. 428, 365 (2004).

    Article  MATH  ADS  Google Scholar 

  42. F. Mottez, Phys. Plasmas 10, 2501 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  43. E. G. Harris, Nuovo Cimento 23, 117 (1962).

    Google Scholar 

  44. W.-Z. Fu and L.-N. Hau, Phys. Plasmas 12, 070701 (2005).

  45. S. M. Mahajan and R. D. Hazeltine, Phys. Plasmas 7, 1287 (2000).

    Article  ADS  Google Scholar 

  46. H. Grad, Rev. Mod. Phys. 32, 830 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 2, p. 103.

    Google Scholar 

  48. V. S. Beskin, Axisymmetric Stationary Flows in Astrophysics (Fizmatlit, Moscow, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Mart’yanov.

Additional information

Original Russian Text © V.Yu. Mart’yanov, V.V. Kocharovsky, Vl.V. Kocharovsky, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 6, pp. 1225–1237.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mart’yanov, V.Y., Kocharovsky, V.V. & Kocharovsky, V.V. Saturation of relativistic Weibel instability and the formation of stationary current sheets in collisionless plasma. J. Exp. Theor. Phys. 107, 1049–1060 (2008). https://doi.org/10.1134/S1063776108120145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108120145

PACS numbers

Navigation