Skip to main content
Log in

Initiation of ecton processes by interaction of a plasma with a microprotrusion on a metal surface

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Evolution of rapid (∼10 ns) Ohmic overheating of a microprotrusion on a surface in contact with a plasma by emission current is studied taking into account the energy carried by plasma ions and electrons, as well as Ohmic heating, emissive source of energy release (Nottingham effect), and heat removal due to heat conduction. Plasma parameters were considered in the range of n = 1014−1020 cm−3 and T e = 0.1 eV−10 keV. The threshold value of energy transferred to the surface from the plasma is found to be 200 MW/cm2; above this value, heating becomes explosive (namely, an increase in the temperature growth rate (δ2 Tt 2 > 0) and in passing current (δJt > 0) is observed in the final stage at T ∼ 104 K and j ∼ 108 A/cm2). In spite of the fact that Ohmic heating does not play any significant role for plasmas with a density lower than 10 18 cm−3 because the current is limited by the space charge of electrons, rapid overheating of top of microprotrusion is observed much sooner (over a time period of ∼1 ns) when the threshold is exceeded. In this case, intense ionization of vapor of the wall material leads to an increase in the plasma density at the surface, and the heating becomes of the Ohmic explosion type. Such conditions for the formation of a micrĭxplosion on the surface and of an ecton accompanying it can be created during the interaction of a plasma with the cathode, anode, or an insulated wall and may lead to the formation of cathode and anode spots, as well as unipolar arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Mesyats, Pis’ma Zh. Éksp. Teor. Fiz. 57(2), 88 (1993) [JETP Lett. 57 (2), 95 (1993)].

    Google Scholar 

  2. G. A. Mesyats, J. Nucl. Mater. 128–129, 618 (1984).

    Article  Google Scholar 

  3. G. M. McCracken and P. E. Stott, Nucl. Fusion 19, 889 (1979).

    ADS  Google Scholar 

  4. G. Federici, C. H. Skinner, J. N. Brooks, et al., Nucl. Fusion 41(12R), 1968 (2001).

    ADS  Google Scholar 

  5. S. I. Krasheninnikov, Y. Tomita, R. D. Smirnov, et al., Phys. Plasmas 11, 3141 (2004); A. Yu. Pigarov, S. I. Krasheninnikov, T. K. Soboleva, et al., Phys. Plasmas 12, 122508 (2005); S. I. Krasheninnikov, R. D. Smirnov, A. Yu. Pigarov, et al., in Proceedings of the 33rd European Physical Society Conference on Plasma Physics, Rome, Italy, 2006; Europhys. Conf. Abstr. Vol. 30I, p. 2.192 (2006).

    Article  ADS  Google Scholar 

  6. K. Vogel and P. Backlund, J. Appl. Phys. 36, 3697 (1965).

    Article  ADS  Google Scholar 

  7. J. K. Tien, N. F. Panayotov, R. D. Stevenson, et al., J. Nucl. Mater. 76–77, 481 (1978).

    Article  Google Scholar 

  8. F. R. Schwirzke and R. J. Taylor, J. Nucl. Mater. 93–94, 780 (1980).

    Article  Google Scholar 

  9. F. R. Schwirzke, IEEE Trans. Plasma Sci. 19, 690 (1991).

    Article  ADS  Google Scholar 

  10. A. Maitland, J. Appl. Phys. 32, 2399 (1961).

    Article  ADS  Google Scholar 

  11. G. A. Mesyats and V. I. Eshkenazi, Izv. Vyssh. Uchebn. Zaved., Fiz. 2, 123 (1968).

    Google Scholar 

  12. K. Hothker, W. Bieger, H. Hartwig, et al., J. Nucl. Mater. 93–94, 785 (1980).

    Article  Google Scholar 

  13. A. Stampa and H. Krueger, J. Phys. D: Appl. Phys. 16, 2135 (1983).

    Article  ADS  Google Scholar 

  14. G. A. Mesyats, Pis’ma Zh. Éksp. Teor. Fiz. 60(7), 514 (1994) [JETP Lett. 60 (7), 527 (1994)].

    Google Scholar 

  15. G. A. Mesyats, Usp. Fiz. Nauk 165(6), 601 (1995) [Phys.—Usp. 38 (6), 567 (1995)].

    Article  Google Scholar 

  16. G. A. Mesyats, Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark, and the Arc (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  17. S. A. Barengol’ts, G. A. Mesyats, and D. L. Shmelev, Zh. Éksp. Teor. Fiz. 120(5), 1227 (2001) [JETP 93 (5), 1065 (2001)].

    Google Scholar 

  18. G. A. Mesyats and S. A. Barengol’ts, Usp. Fiz. Nauk 172(10), 1113 (2002) [Phys.—Usp. 45 (10), 1001 (2002)].

    Article  Google Scholar 

  19. I. V. Uimanov, IEEE Trans. Plasma Sci. 31, 822 (2003).

    Article  ADS  Google Scholar 

  20. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Action of High-Power Radiation on Metals (Nauka, Moscow, 1970; National Technical Information Service, Springfield, VA, United States, 1971).

    Google Scholar 

  21. S. A. Barengolts, M. Yu. Kreindel, and E. A. Litvinov, IEEE Trans. Plasma Sci. 26, 331 (1998).

    Article  Google Scholar 

  22. V. E. Zinov’ev, Handbook of Thermophysical Properties of Metals at High Temperatures (Metallurgiya, Moscow, 1989; Nova Science, New York, 1996).

    Google Scholar 

  23. A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, New York, 1984; Nauka, Moscow, 1990), pp. 10-32.

    Google Scholar 

  24. S. S. Mackeowen, Phys. Rev. 34, 611 (1929).

    Article  ADS  Google Scholar 

  25. V. L. Granovskiĭ, Electric Current in a Gas (Nauka, Moscow, 1971), p. 36 [in Russian].

    Google Scholar 

  26. A. V. Bushman, S. L. Leshkevich, G. A. Mesyats, et al., Dokl. Akad. Nauk SSSR 312, 1368 (1990) [Sov. Phys. Dokl. 35, 561 (1990)].

    Google Scholar 

  27. I. F. Kvartskhava, A. A. Plyutto, A. A. Chernov, and V. V. Bondarenko, Zh. Éksp. Teor. Fiz. 30, 42 (1956) [Sov. Phys. JETP 3, 40 (1956)].

    Google Scholar 

  28. V. S. Sedoi, G. A. Mesyats, V. I. Oreshkin, et al., IEEE Trans. on Plasma Sci. 27, 845 (1999).

    Article  Google Scholar 

  29. A. A. Valuev and G. É. Norman, Zh. Éksp. Teor. Fiz. 116(6), 2176 (1999) [JETP 89 (6), 1180 (1999)].

    Google Scholar 

  30. V. I. Oreshkin, S. A. Barengol’ts, and S. A. Chaikovsky, Zh. Tekh. Fiz. 77(5), 108 (2007) [Tech. Phys. 52 (5), 642 (2007)].

    Google Scholar 

  31. M. N. Krivoguz, G. E. Norman, V. V. Stegailov, and A. A. Valuev, J. Phys. A: Math. Gen. 36, 6041 (2003).

    Article  ADS  Google Scholar 

  32. G. E. Norman, V. V. Stegailov, and A. A. Valuev, Contrib. Plasma Phys. 43, 384 (2003).

    Article  ADS  Google Scholar 

  33. A. E. Robson and P. C. Tonemann, Proc. Phys. Soc. 73, 508 (1959).

    Article  Google Scholar 

  34. F. R. Schwirzke, J. Nucl. Mater. 128–129, 609 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Tsventoukh.

Additional information

Original Russian Text © S.A. Barengolts, G.A. Mesyats, M.M. Tsventoukh, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 6, pp. 1213–1224.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barengolts, S.A., Mesyats, G.A. & Tsventoukh, M.M. Initiation of ecton processes by interaction of a plasma with a microprotrusion on a metal surface. J. Exp. Theor. Phys. 107, 1039–1048 (2008). https://doi.org/10.1134/S1063776108120133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108120133

PACS numbers

Navigation