Skip to main content
Log in

Macrospin in ferromagnetic nanojunctions

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the passage of transverse current through a ferromagnetic nanojunctions, viz., a layered nanostructure of the spin-valve type containing two ferromagnetic layers separated by a spacer that prevents exchange coupling between the layers in the absence of current, but does not affect spin polarization of the current. The conditions for a high level of injection of spins by current are derived at which the concentration of injected nonequilibrium spins can reach or even exceed their equilibrium concentration. In such conditions, a number of new effects are observed. The threshold of exchange switching by current is lowered by several orders of magnitude due to matching of spin resistances of the layers. The application of an external magnetic field in the vicinity of the orientation phase transition additionally lowers this threshold. This leads to multistability, in which one value of the current corresponds to two (or more) stable noncollinear orientations of magnetization, and switching itself becomes irreversible. A methodical feature of this research is that the calculation is performed in the so-called macrospin approximation, which is in good agreement with most of known experiments. In this approximation, the equations of motion taking into account the torque as well as spin injection are derived for the first time and solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).

    Article  ADS  Google Scholar 

  2. L. Berger, Phys. Rev. B: Condens. Matter 54, 9353 (1996).

    ADS  Google Scholar 

  3. C. Heide, P. E. Zilberman, and R. J. Elliott, Phys. Rev. B: Condens. Matter 63, 064 424 (2001).

    Google Scholar 

  4. Yu. V. Gulyaev, P. E. Zil’berman, É. M. Epshteoen, and R. J. Elliott, Pis’ma Zh. Éksp. Teor. Fiz. 76(3), 189 (2002) [JETP Lett. 76 (3), 155 (2002)].

    Google Scholar 

  5. Yu. V. Gulyaev, P. E. Zil’berman, E. M. Epshtein, and R. J. Elliott, Zh. Éksp. Teor. Fiz. 127(5), 1138 (2005) [JETP 100 (5), 1005 (2005)].

    Google Scholar 

  6. E. M. Epshtein, Yu. V. Gulyaev, and P. E. Zilberman, arXiv:cond-mat/0606102.

  7. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science (Washington) 285, 867 (1999).

    Article  Google Scholar 

  8. T. Y. Chen, Y. Ji, and C. L. Chien, Appl. Phys. Lett. 84,380 (2004).

    Article  ADS  Google Scholar 

  9. Z. Diao, A. Panchula, Y. Ding, M. Pakala, Sh. Wang, Zh. Li, D. Apalkov, H. Nagai, A. Driskill-Smith, L.-Ch. Wang, E. Chen, and Y. Huai, Appl. Phys. Lett. 90, 132508 (2007).

  10. A. Fert, V. Cros, J.-M. George, J. Grollier, H. Jaffres, A. Hamzic, A. Vaures, G. Faini, J. Ben Youssef, and H. Le Gall, arXiv:cond-mat/0310737.

  11. Yu. V. Gulyaev, P. E. Zil’berman, A. I. Panas, and É. M. Épshteĭn, Pis’ma Zh. Éksp. Teor. Fiz. 86(5), 381 (2007) [JETP Lett. 86 (5), 328 (2007)].

    Google Scholar 

  12. Yu. V. Gulyaev, P. E. Zil’berman, A. I. Krikunov, A. I. Panas, and É. M. Épshteĭn, Pis’ma Zh. ÉEksp. Teor. Fiz. 85(3), 192 (2007) [JETP Lett. 85 (3), 160 (2007)].

    Google Scholar 

  13. E. M. Epshtein, Yu. V. Gulyaev, and P. E. Zilberman, J. Magn. Magn. Mater. 312, 200 (2007).

    Article  ADS  Google Scholar 

  14. T. Valet and A. Fert, Phys. Rev. B: Condens. Matter 48,7099 (1993).

    ADS  Google Scholar 

  15. A. K. Zvezdin and K. A. Zvezdin, Kratk. Soobshch. Fiz., No. 8, 3 (2002).

  16. Yu. V. Gulyaev, P. E. Zilberman, and É. M. Épshteoen, Dokl. Akad. Nauk 410(1–3), 197 (2006) [Dokl. Phys. 51 (9), 496 (2006)].

    MATH  Google Scholar 

  17. T. Kumura, Y. Otani, and J. Hamrle, Phys. Rev. Lett. 96, 037 201 (2006).

    Google Scholar 

  18. P. Weinberger, A. Vernes, B. L. Gyorffy, and L. Szunyogh, arXiv:cond-mat/0404534.

  19. M. D. Stiles, J. Xiao, and A. Zangwill, arXiv:condmat/ 0309289.

  20. G. Bertotti, C. Serpico, I. D. Mayergoyz, A. Magni, M. d’Aquino, and R. Bonin, Phys. Rev. Lett. 94, 127 206 (2005).

    Google Scholar 

  21. Y. Utsumi, Y. Shimizu, and H. Miyazaki, J. Phys. Soc. Jpn. 68, 3444 (1999).

    Article  Google Scholar 

  22. R. J. Elliott, E. M. Epshtein, Yu. V. Gulyaev, and P. E. Zilberman, J. Magn. Magn. Mater. 271, 88 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Zilberman.

Additional information

Original Russian Text © Yu.V. Gulyaev, P.E. Zilberman, A.I. Panas, E.M. Epshtein, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 6, pp. 1200–1212.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulyaev, Y.V., Zilberman, P.E., Panas, A.I. et al. Macrospin in ferromagnetic nanojunctions. J. Exp. Theor. Phys. 107, 1027–1038 (2008). https://doi.org/10.1134/S1063776108120121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108120121

PACS numbers

Navigation