Skip to main content
Log in

Processes involved in the formation of silver clusters on silicon surface

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze scanning electron microscopy measurements for structures formed in the deposition of solid silver clusters onto a silicon(100) substrate and consider theoretical models of cluster evolution onto a surface as a result of diffusion and formation of aggregates of merged clusters. Scanning electron microscopy (SEM) data are presented in addition to energy dispersive X-ray spectrometry (EDX) measurements of the these films. Solid silver clusters are produced by a DC magnetron sputtering source with a quadrupole filter for selection of cluster sizes (4.1 and 5.6 nm or 1900 and 5000 atoms per cluster in this experiment); the energy of cluster deposition is 0.7 eV/atom. Rapid thermal annealing of the grown films allows analysis of their behavior at high temperatures. The results exhibit formation of cluster aggregates via the diffusion of deposited solid clusters along the surface; an aggregate consists of up to hundreds of individual clusters. This process is essentially described by the diffusion-limited aggregation (DLA) model, and thus a grown porous film consists of cluster aggregates joined by bridges. Subsequent annealing of this film leads to its melting at temperatures lower than to the melting point of bulk silver. Analysis of evaporation of this film at higher temperatures gives a binding energy in bulk silver of ɛ0= (2.74 ± 0.03) eV/atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Kukushkin and V. V. Slezov, Disperse Systems on Solid Surfaces (Nauka, St. Petersburg, 1996).

    Google Scholar 

  2. S. A. Kukushkin and A. V. Osipov, Usp. Phys. Nauk 168(10), 1083 (1998) [Phys.—Usp. 41 (10), 983 (1998)].

    Article  Google Scholar 

  3. P. Jensen, A. L. Barabási, H. Larralde, et al., Phys. Rev. B: Condens. Matter 50, 15 316 (1994).

    Google Scholar 

  4. A. Perez, P. Melinon, V. Dupuis, et al., J. Phys. D: Appl. Phys. 30, 709 (1997).

    Article  ADS  Google Scholar 

  5. T. A. Witten and I. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  ADS  Google Scholar 

  6. P. Meakin, Phys. Rev. A: At., Mol., Opt. Phys. 27, 604, 1495 (1983).

    ADS  MathSciNet  Google Scholar 

  7. M. Sahimi, M. McKarnin, T. Nordahl, and M. Tirrell, Phys. Rev. A: At., Mol., Opt. Phys. 32, 590 (1985).

    ADS  Google Scholar 

  8. B. M. Smirnov, Phys. Rep. 188, 1 (1990).

    Article  ADS  Google Scholar 

  9. H. Gleiter, Nanostruct. Mater. 1, 1 (1992).

    Article  Google Scholar 

  10. H. Gleiter, Nanostruct. Mater. 6, 3 (1995)

    Article  Google Scholar 

  11. S. Y. Liau, D. C. Read, W. J. Pugh, et al., Lett. Appl. Microbiol. 25, 279 (1997).

    Article  Google Scholar 

  12. A. Gupta and S. Silver, Nat. Biotechnol. 16, 888 (1998).

    Article  Google Scholar 

  13. K. Nomiya, A. Yoshizawa, K. Tsukagoshi, et al., J. Inorg. Biochem. 98, 46 (2004).

    Article  Google Scholar 

  14. J. R. Morones, J. L. Elechiguerra, A. Camacho, et al., Nanotechnology 16, 2346 (2005).

    Article  ADS  Google Scholar 

  15. C. Binns, Surf. Sci. Rep. 44, 1 (2001).

    Article  ADS  Google Scholar 

  16. K. Shintani, Y. Taniguchi, and S. Kameoka, J. Appl. Phys. 95, 8207 (2004).

    Article  ADS  Google Scholar 

  17. T. H. Lee, C. R. Hladik, and R. M. Dickson, Appl. Phys. Lett. 84, 118 (2004).

    Article  ADS  Google Scholar 

  18. I. Shyjumon, M. Gopinadhan, O. Ivanova, et al., Eur. Phys. J. D 37, 409 (2006).

    Article  ADS  Google Scholar 

  19. B. M. Smirnov, I. Shyjumon, and R. Hippler, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77, 066 402 (2007).

  20. I. Shyjumon, M. Gopinadhan, C. A. Helm, et al., Thin Solid Films 500, 41 (2006).

    Article  ADS  Google Scholar 

  21. B. M. Smirnov, I. Shyjumon, and R. Hippler, Phys. Scr. 73, 288 (2006).

    Article  ADS  Google Scholar 

  22. www.oaresearch.co.uk/cluster.htm

  23. B. M. Smirnov, Clusters and Small Particles in Gases and Plasmas (Springer, New York, 1999).

    Google Scholar 

  24. K. Siegbahn, Alpha-, Beta-, and Gamma-Ray Spectroscopy (North Holland, Amsterdam, 1965).

    MATH  Google Scholar 

  25. J. I. Goldstein, D. E. Newbury, P. Echlin, et al., in Scanning Electron Microscopy and X-ray Microanalysis (Kluwer, New York, 2003).

    Google Scholar 

  26. S. J. Carroll, S. Pratontep, M. Streun, et al., J. Chem. Phys. 113, 7723 (2000).

    Article  ADS  Google Scholar 

  27. M. Couillard, S. Pratontep, and R. E. Palmer, Appl. Phys. Lett. 82, 2595 (2003).

    Article  ADS  Google Scholar 

  28. R. E. Palmer, S. Pratontep, and H. G. Boyen, Nat. Mater. 2, 443 (2004).

    Article  ADS  Google Scholar 

  29. P. Meakin, J. Colloid Interface Sci. 102, 491 (1985).

    Article  Google Scholar 

  30. Z. Racz and M. Pischke, Phys. Rev. A: At., Mol., Opt. Phys. 31, 985 (1985).

    ADS  Google Scholar 

  31. R. Jullien and R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).

    MATH  Google Scholar 

  32. T. Viszek, Fractal Growth Phenomena (World Sci., Singapore, 1989).

    Google Scholar 

  33. W. T. Elam, S. A. Wolf, J. Sprague, et al., Phys. Rev. Lett. 54, 701 (1985).

    Article  ADS  Google Scholar 

  34. Y. Sawada, A. Dougherty, and J. P. Golub, Phys. Rev. Lett. 56, 1260 (1986).

    Article  ADS  Google Scholar 

  35. D. Grier, E. Ben-Jacob, R. Clarke, and L. M. Sander, Phys. Rev. Lett. 56, 1264 (1986).

    Article  ADS  Google Scholar 

  36. B. M. Smirnov and R. S. Berry, Phase Transitions of Simple Systems (Springer, Berlin, 2007).

    Google Scholar 

  37. T. Castro, R. Reifenberger, E. E. Choi, and R. P. Andres, Phys. Rev. B: Condens. Matter 42, 8548 (1990).

    ADS  Google Scholar 

  38. S. Zhao, S. Wang, and H. Ye, J. Phys. Soc. Jpn. 70, 2953 (2001).

    Article  ADS  Google Scholar 

  39. H. Arslan and M. H. Güven, New J. Phys. 7, 60 (2005).

    Article  ADS  Google Scholar 

  40. C. L. Cleveland, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 81, 2036 (1998).

    Article  Google Scholar 

  41. S. Pratontep, S. J. Carroll, C. Xirouchaki, et al., Rev. Sci. Instrum. 76, 045103 (2005).

    Google Scholar 

  42. A. T. Bell, Science (Washington) 299, 1688 (2003).

    Article  ADS  Google Scholar 

  43. A. P. Alivisatos, Science (Washington) 271, 933 (1996).

    Article  ADS  Google Scholar 

  44. C. S. Lent and P. D. Tougaw, Proc. IEEE 85, 541 (1997).

    Article  Google Scholar 

  45. S. O. Obare, R. E. Hollowell, and C. J. Murphy, Langmuir 18, 10 407 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Smirnov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, S.R., Chini, T.K., Datta, D. et al. Processes involved in the formation of silver clusters on silicon surface. J. Exp. Theor. Phys. 107, 1009–1021 (2008). https://doi.org/10.1134/S1063776108120108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108120108

PACS numbers

Navigation