Skip to main content
Log in

Possible nature of the pseudogap anomalies in HTSC

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An HTSC model, in which the interaction of valence-band electrons with diatomic negative U centers is assumed to be responsible for the anomalous properties of HTSC compounds, is proposed and used to explain the nature of the pseudogap and pseudogap anomalies (including the giant Nernst effect, the anomalous diamagnetism above T c, the “transfer” of the optical spectral weight). For YBa2Cu3O6 + δ, the pseudogap opening temperature T* and T c are calculated as functions of the degree of doping δ. The calculated dependences agree quantitatively with the experimental dependences without using scale fitting parameters. The good agreement between the calculated and experimental results can serve as an argument for the proposed HTSC model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Loram, K. A. Mirza, J. R. Cooper, et al., J. Supercond. 7, 243 (1994).

    Article  ADS  Google Scholar 

  2. H. Ding, T. Yokoya, J. C. Campuzano, et al., Nature (London) 382, 51 (1996).

    Article  ADS  Google Scholar 

  3. C. Renner, B. Revaz, J.-Y. Genoud, et al., Phys. Rev. Lett. 80, 149 (1998).

    Article  ADS  Google Scholar 

  4. J. C. Phillips, A. Saxena, and A. R. Bishop, Rep. Prog. Phys. 66, 2111 (2003).

    Article  ADS  Google Scholar 

  5. D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 (2005).

    Article  ADS  Google Scholar 

  6. K. Anagawa, Y. Yamada, T. Shibauchi, et al., Appl. Phys. Lett. 83, 2381 (2003).

    Article  ADS  Google Scholar 

  7. G. V. M. Williams, J. L. Tallon, R. Michalak, et al., Phys. Rev. B: Condens. Matter 54, 6909 (1996).

    ADS  Google Scholar 

  8. C. C. Homes, T. Timusk, R. Liang, et al., Phys. Rev. Lett. 71, 1645 (1993).

    Article  ADS  Google Scholar 

  9. Z. A. Xu, N. P. Ong, Y. Wang, et al., Nature (London) 406, 486 (2000).

    Article  ADS  Google Scholar 

  10. Yayu Wang, Lu Li, M. J. Naughton, et al., Phys. Rev. Lett. 95, 247 002 (2005).

  11. M. Hashimoto, T. Yoshida, K. Tanaka, et al., Phys. Rev. B: Condens. Matter 75, 140 503 (2007).

    Google Scholar 

  12. K. McElroy, J. Lee, J. A. Slezak, et al., Science (Washington) 309, 1048 (2005).

    Article  ADS  Google Scholar 

  13. I. Vobornik, H. Berger, M. Grioni, et al., Phys. Rev. B: Condens. Matter 61, 11 248 (2000).

    Google Scholar 

  14. K. V. Mitsen and O. M. Ivanenko, Zh. Éksp. Teor. Fiz. 118(3), 666 (2000) [JETP 91 (3), 579 (2000)].

    Google Scholar 

  15. K. V. Mitsen and O. M. Ivanenko, Usp. Fiz. Nauk 174(5), 545 (2004) [Phys.—Usp. 47 (5), 493 (2004)].

    Article  Google Scholar 

  16. E. Simanek, Solid State Commun. 32, 731 (1979).

    Article  ADS  Google Scholar 

  17. C. S. Ting, D. N. Talwar, and K. L. Ngai, Phys. Rev. Lett. 45, 1213 (1980).

    Article  ADS  Google Scholar 

  18. V. A. Kondrat’ev and S. P. Ionov, Izv. Akad. Nauk SSSR, Ser. Fiz. 49, 310 (1985).

    Google Scholar 

  19. H.-B. Schuttler, M. Jarrell, and D. J. Scalapino;, Phys. Rev. Lett. 58, 1147 (1987).

    Article  ADS  Google Scholar 

  20. B. Ya. Moĭzhes and S. G. Suprun, Fiz. Tverd. Tela (Leningrad) 29(2), 441 (1987) [Sov. Phys. Solid State 29 (2), 252 (1987)].

    Google Scholar 

  21. B. A. Volkov and V. V. Tugushev, Pis’ma Zh. Éksp. Teor. Fiz. 46(5), 193 (1987) [JETP Lett. 46 (5), 245 (1987)].

    ADS  Google Scholar 

  22. G. M. Éliashberg, Pis’ma Zh. Éksp. Teor. Fiz. 46 (Prilozh.), 94 (1987) [JETP Lett. 46 (Suppl.), S81 (1987)].

    ADS  Google Scholar 

  23. I. O. Kulik, Fiz. Nizk. Temp. (Kharkov) 13(8), 879 (1987) [Sov. J. Low Temp. Phys. 13 (8), 505 (1987).

    ADS  Google Scholar 

  24. P. I. Arseev, Zh. Éksp. Teor. Fiz. 101(4), 1246 (1992) [Sov. Phys. JETP 74 (4), 676 (1992)].

    ADS  Google Scholar 

  25. J. Ranninger and A. Romano, Phys. Rev. B: Condens. Matter 66, 94 508 (2002).

    Google Scholar 

  26. A. I. Rusinov, Do Chan Kat, and Yu. V. Kopaev, Zh. Éksp. Teor. Fiz. 65(5), 1984 (1973) [Sov. Phys. JETP 38 (5), 991 (1973)].

    Google Scholar 

  27. D. R. Harshman and A. P. Mills, Phys. Rev. B: Condens. Matter 45, 10 684 (1992).

    Google Scholar 

  28. G. Shirane, Y. Endoh, R. J. Birgeneau, et al., Phys. Rev. Lett. 59, 1613 (1987).

    Article  ADS  Google Scholar 

  29. D. Haskel, V. Polinger, and E. A. Stern, AIP Conf. Proc. 483, 241 (1999).

    Article  ADS  Google Scholar 

  30. P. C. Hammel, B. W. Statt, R. L. Martin, et al., Phys. Rev. B: Condens. Matter 57, R712 (1998).

    ADS  Google Scholar 

  31. F. Ronning, C. Kim, D. L. Feng, et al., Science (Washington) 282, 2067 (1998).

    Article  ADS  Google Scholar 

  32. K. Segawa and Y. Ando, Phys. Rev. B: Condens. Matter 69, 104 521 (2004).

    Google Scholar 

  33. J. Jacobson, J. M. Newsam, D. C. Johnston, et al., Phys. Rev. B: Condens. Matter 39, 254 (1989).

    ADS  Google Scholar 

  34. K. Segawa and Y. Ando, Phys. Rev. Lett. 86, 4907 (2001).

    Article  ADS  Google Scholar 

  35. R. McCormack, D. de Fontaine, and G. Ceder, Phys. Rev. B: Condens. Matter 45, 12 976 (1992).

    Google Scholar 

  36. O. Entin-Wohlman, A. Kapitulnik, and Y. Shapira, Phys. Rev. B: Condens. Matter 24, 6464 (1981).

    ADS  Google Scholar 

  37. T. Ito, K. Takenaka, and S. Uchida, Phys. Rev. Lett. 70, 3995 (1993).

    Article  ADS  Google Scholar 

  38. K. Kumagai, K. Kawano, I. Watanabe, et al., J. Supercond. 7, 63 (1994).

    Article  ADS  Google Scholar 

  39. K. V. Mitsen and O. M. Ivanenko, Eur. Phys. J. B 52, 227 (2006).

    Google Scholar 

  40. J. M. Tranquada, J. D. Axe, N. Ichikawa, et al., Phys. Rev. B: Condens. Matter 54, 7489 (1996).

    ADS  Google Scholar 

  41. Y. Ando, G. S. Boebinger, A. Passner, et al., Phys. Rev. B: Condens. Matter 56, R8530 (1997).

  42. I. Iguchi, T. Yamaguchi, and A. Sugimoto, Nature (London) 412, 420 (2001); J. Low Temp. Phys. 131, 451 (2003).

    Article  ADS  Google Scholar 

  43. C. C. Homes, T. Timusk, D. A. Bonn, et al., Physica C (Amsterdam) 254, 265 (1995).

    ADS  Google Scholar 

  44. H. Sozeri, L. Dorosinskii, and U. Topal, Physica C (Amsterdam) 434, 95 (2006).

    ADS  Google Scholar 

  45. N. P. Ong, Y. Wang, S. Ono, et al., Ann. Phys. (Weinheim, Ger.) 13, 9 (2004).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Mitsen.

Additional information

Original Russian Text © K.V. Mitsen, O.M. Ivanenko, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 6, pp. 1153–1166.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsen, K.V., Ivanenko, O.M. Possible nature of the pseudogap anomalies in HTSC. J. Exp. Theor. Phys. 107, 984–995 (2008). https://doi.org/10.1134/S106377610812008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377610812008X

PACS numbers

Navigation