Skip to main content
Log in

Stimulation of vapor nucleation on perfect and imperfect hexagonal lattice surfaces

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Monte Carlo simulations of water vapor nucleation on a perfect crystal surface and on a surface with defects are performed. Mass exchange with the vapor phase is modeled by using an open ensemble. Cluster-substrate interaction is described in terms of conventional atom-atom potentials. The Hamiltonian of the system includes expressions for electrostatic, polarization, exchange, and dispersion interactions. The Gibbs free energy and work of adsorption are calculated by Monte Carlo simulation in the bicanoĭnical ensemble. The microscopic structure of nuclei is analyzed in terms of pair correlation functions. Periodic boundary conditions are used to simulate an infinite substrate surface. Molecule-substrate and molecule-molecule long-range electrostatic interactions are calculated by summing the Fourier harmonics of the electrostatic potential. Dispersion interactions are calculated by direct summation over layers of unit cells. Nucleation on a surface with matching structure follows a layer-by-layer mechanism. The work of adsorption per molecule of a monolayer on the substrate surface has a maximum as a function of nucleus size. The steady rate of nucleation of islands of supercritical size is evaluated. The work of adsorption per molecule for layer-by-layer film growth is an oscillating function of cluster size. As a function of layer number, it has a minimum depending on the vapor pressure. The electric field generated by a microscopic surface protrusion destroys the layered structure of the condensate and eliminates free-energy nucleation barriers. However, point lattice defects do not stimulate explosive nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. Wagner, D. Kaller, A. Vrtala, et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 021 605 (2003).

    Google Scholar 

  2. A. Lauri, I. Riipinen, J. A. Ketoja, et al., Langmuir 22, 10061 (2006).

    Article  Google Scholar 

  3. A. A. Brin’ and S. P. Fisenko, Inzh.-Fiz. Zh. 76, 26 (2006).

    Google Scholar 

  4. A. A. Brin’ and S. P. Fisenko, Inzh.-Fiz. Zh. 76, 31 (2006).

    Google Scholar 

  5. A. A. Brin’ and S. P. Fisenko, Inzh.-Fiz. Zh. 79, 10 (2006).

    Google Scholar 

  6. S. P. Fisenko and A. A. Brin, Int. J. Heat Mass Transfer 49, 1004 (2006).

    Article  Google Scholar 

  7. S. P. Fisenko, W. N. Wang, M. Shimada, and K. Okuyama, Int. J. Heat Mass Transfer 50, 2333 (2007).

    Article  MATH  Google Scholar 

  8. V. Abdelsayed and M. S. El-Shall, J. Chem. Phys. 126, 024706 (2007).

    Google Scholar 

  9. K. Padilla and V. Talanquer, J. Chem. Phys. 114, 1319 (2001).

    Article  ADS  Google Scholar 

  10. M. Kulmala, L. Pirjola, and J. M. Mäkelä, Nature (London) 404, 66 (2000).

    Article  ADS  Google Scholar 

  11. Ya. I. Kogan and Z. A. Burnasheva, Zh. Fiz. Khim. 34, 2631 (1960) [Sov. J. Phys. Chem. 34, 1240 (1960)].

    Google Scholar 

  12. S. P. Fisenko, M. Shimada, and K. Okuyama, in Proceedings of the 17th International Conference on Nucleation and Atmospheric Aerosols, Galway, Ireland, 2007, Ed. by C. D. O’Dowd and P. E. Wagner (Springer, Amsterdam, The Netherlands, 2007), Part 1, p. 181.

    Google Scholar 

  13. P. Winkler, G. Steiner, A. Vrtala, et al., Science (Washington) 319, 1374 (2008).

    Article  ADS  Google Scholar 

  14. J. Dessons, J. Appl. Meteorol. 37, 1588 (1998).

    Article  ADS  Google Scholar 

  15. G. K. Mather, M. J. Dixon, and J. M. de Jager, J. Appl. Meteorol. 35, 1465 (1996).

    Article  ADS  Google Scholar 

  16. A. L. Rangno and P. V. Hobbs, J. Appl. Meteorol. 32, 1837 (1993).

    Article  Google Scholar 

  17. D. Rosenfeld and W. L. Woodley, J. Appl. Meteorol. 32, 1848 (1993).

    Article  Google Scholar 

  18. P. J. DeMott, J. Weather Modif. 20, 44 (1988).

    Google Scholar 

  19. E. W. Holroyd III, J. T. McPartland, and A. B. Super, J. Appl. Meteorol. 27, 1125 (1988).

    Article  ADS  Google Scholar 

  20. D. Rosenfeld and W. L. Woodley, J. Appl. Meteorol. 28, 1050 (1989).

    Article  ADS  Google Scholar 

  21. A. B. Super, B. A. Boe, E. W. Holroyd, and J. A. Heimbach, Jr., J. Appl. Meteorol. 27, 1145 (1988).

    Article  ADS  Google Scholar 

  22. A. B. Super and J. A. Heimbach, Jr., J. Appl. Meteorol. 27, 1152 (1988).

    Article  ADS  Google Scholar 

  23. A. B. Super and B. A. Boe, J. Appl. Meteorol. 27, 1166 (1988).

    Article  ADS  Google Scholar 

  24. E. K. Bigg, J. Appl. Meteorol. 27, 453 (1988).

    Article  ADS  Google Scholar 

  25. B. C. Hale, R. C. Ward, and S. Terrazas, J. Chem. Phys. 78, 420 (1983).

    Article  ADS  Google Scholar 

  26. B. N. Hale and D. J. DiMattio, in Proceedings of the 14th International Conference on Nucleation and Atmospheric Aerosols, Helsinki, Finland, 1966, Ed. by M. Kulmala and P. Wagner (Pergamon, New York, 1996), p. 349.

    Google Scholar 

  27. K. Han and B. N. Hale, Phys. Rev. B: Condens. Matter 45, 29 (1992).

    ADS  Google Scholar 

  28. B. N. Hale, J. Kiefer, and C. A. Ward, J. Chem. Phys. 75, 1991 (1981).

    Article  Google Scholar 

  29. B. N. Hale and J. Kiefer, J. Chem. Phys. 73, 923 (1980).

    Article  ADS  Google Scholar 

  30. E. L. Zapadinsky and M. Kulmala, J. Chem. Phys. 102, 6858 (1995).

    Article  ADS  Google Scholar 

  31. J. H. Taylor and B. N. Hale, Phys. Rev. B: Condens. Matter 47, 9732 (1993).

    ADS  Google Scholar 

  32. S. V. Shevkunov, Zh. Éksp. Teor. Fiz. 108(4), 1373 (1995) [JETP 81 (4), 753 (1995)].

    Google Scholar 

  33. S. V. Shevkunov, Kolloidn. Zh. 67(4), 548 (2005) [Colloid J. 67 (4), 497 (2005)].

    Google Scholar 

  34. S. V. Shevkunov, Kolloidn. Zh. 67(4), 561 (2005) [Colloid J. 67 (4), 509 (2005)].

    Google Scholar 

  35. V. M. Zamalin, G. E. Norman, and V. S. Filinov, The Monte Carlo Method in Statistical Thermodynamics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  36. L. V. Woodcock and K. Singer, Trans. Faraday Soc. 67, 12 (1971).

    Article  Google Scholar 

  37. S. W. de Leeuw and J. W. Perram, Physica A (Amsterdam) 107, 179 (1981).

    Article  ADS  Google Scholar 

  38. F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974).

    Article  ADS  Google Scholar 

  39. B. N. Hale and J. Kiefer, J. Chem. Phys. 73, 923 (1980).

    Article  ADS  Google Scholar 

  40. G. Burley, Am. Mineral. 48, 1266 (1963); J. Phys. Chem. Solids 55, 629 (1964).

    Google Scholar 

  41. W. Bührer, R. M. Nicklow, and P. Brüesch, Phys. Rev. B: Solid State 17, 3362 (1978).

    ADS  Google Scholar 

  42. A Chemist’s Handbook (Khimiya, Leningrad, 1971), p. 404 [in Russian].

  43. S. V. Shevkunov, A. A. Martsinovskiĭ, and P. N. Vorontsov-Vel’yaminov, Teplofiz. Vys. Temp. 26, 246 (1988).

    Google Scholar 

  44. S. V. Shevkunov, A. A. Martsiinovski, and P. N. Vorontsov-Velyaminov, Mol. Simul. 5, 119 (1990).

    Article  Google Scholar 

  45. S. V. Shevkunov, Zh. Éksp. Teor. Fiz. 119(3), 485 (2001) [JETP 92 (3), 420 (2001)].

    Google Scholar 

  46. S. I. Lukyanov, Z. S. Zidi, and S. V. Shevkunov, THEOCHEM 623, 221 (2003).

  47. S. V. Shevkunov, S. I. Lukyanov, J.-M. Leyssale, and C. Millot, Chem. Phys. 310, 97 (2005).

    Article  ADS  Google Scholar 

  48. S. V. Shevkunov and A. Vegiri, Mol. Phys. 98(3), 149 (2000).

    Article  ADS  Google Scholar 

  49. A. Vegiri and S. V. Shevkunov, J. Chem. Phys. 113, 8521 (2000).

    Article  ADS  Google Scholar 

  50. S. V. Shevkunov, Kolloidn. Zh. 66, 554, 566 (2004).

    Google Scholar 

  51. Ch. Kittel, Elementary Statistical Physics (Whey, New York, 1965; Nauka, Moscow, 1977).

    Google Scholar 

  52. Ya. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 12, 525 (1942).

    Google Scholar 

  53. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991; CRC Press, Boca Raton, FL, United States, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 6, pp. 1130–1152.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevkunov, S.V. Stimulation of vapor nucleation on perfect and imperfect hexagonal lattice surfaces. J. Exp. Theor. Phys. 107, 965–983 (2008). https://doi.org/10.1134/S1063776108120078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108120078

PACS numbers

Navigation