Skip to main content
Log in

Detection of two-mode compression and degree of entanglement in continuous variables in parametric scattering of light

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Generation of “twin beams” (of light with two-mode compression) in single-pass optical parametric amplifier (a crystal with a nonzero quadratic susceptibility) is considered. Radiation at the output of the nonlinear crystal is essentially multimode, which raises the question about the effect of the detection volume on the extent of suppression of noise from the difference photocurrent of the detectors. In addition, the longitudinal as well as transverse size of the region in which parametric transformation takes place is of fundamental importance. It is shown that maximal suppression of noise from difference photocurrent requires a high degree of entanglement of two-photon light at the outlet of the parametric amplifier, which is defined by Federov et al. [Phys. Rev. A 77, 032336 (2008)] as the ratio of the intensity distribution width to the correlation function width. The detection volume should be chosen taking into account both these quantities. Various modes of single-pass generation of twin beams (noncollinear frequency-degenerate and collinear frequency-nondegenerate synchronism of type I, as well as collinear frequency-degenerate synchronism of type II) are considered in connection with the degree of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, et al., Phys. Rev. Lett. 93, 243 601 (2004).

    Google Scholar 

  2. M. Bondani, A. Allevi, G. Zambra, et al., Phys. Rev. A: At., Mol., Opt. Phys. 76, 013 833 (2007).

    Google Scholar 

  3. M. V. Fedorov, M. A. Efremov, A. E. Kazakov, et al., Phys. Rev. A: At., Mol., Opt. Phys. 69, 052 117 (2004).

    Google Scholar 

  4. M. V. Fedorov, M. A. Efremov, A. E. Kazakov, et al., Phys. Rev. A: At., Mol., Opt. Phys. 72, 032 110 (2005).

    Google Scholar 

  5. C. K. Law, I. A. Walmsley, and J. H. Eberly, Phys. Rev. Lett. 84, 5304 (2000).

    Article  ADS  Google Scholar 

  6. R. S. Bennink and R. W. Boyd, Phys. Rev. A: At., Mol., Opt. Phys. 66, 053815-1 (2002).

    Google Scholar 

  7. W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, Phys. Rev. A: At., Mol., Opt. Phys. 73, 063819-1 (2006).

    Google Scholar 

  8. A. V. Burlakov, M. V. Chekhova, D. N. Klyshko, et al., Phys. Rev. A: At., Mol., Opt. Phys. 56, 3214 (1997).

    ADS  Google Scholar 

  9. C. H. Monken, P. H. Souto Ribeiro, and S. Pardua, Phys. Rev. A: At., Mol., Opt. Phys. 57, 3123 (1998).

    Google Scholar 

  10. M. V. Fedorov, M. A. Efremov, P. A. Volkov, et al., Phys. Rev. Lett. 99, 063901 (2007).

    Google Scholar 

  11. M. V. Fedorov, M. A. Efremov, P. A. Volkov, et al., Phys. Rev. A: At., Mol., Opt. Phys. 77, 032336 (2008).

    Google Scholar 

  12. M. Kolobov, Rev. Mod. Phys. 71, 1539 (1999).

    Article  ADS  Google Scholar 

  13. E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, Phys. Rev. A: At., Mol., Opt. Phys. 69, 023 802 (2004).

    Google Scholar 

  14. A. V. Belinsky and D. N. Klyshko, Laser Phys. 4, 663 (1994).

    Google Scholar 

  15. T. E. Keller and M. H. Rubin, Phys. Rev. A: At., Mol., Opt. Phys. 56, 1534 (1997).

    ADS  Google Scholar 

  16. W. P. Grice and I. A. Walmsley, Phys. Rev. A: At., Mol., Opt. Phys. 56, 1627 (1997).

    ADS  Google Scholar 

  17. Yu. M. Mikhailova, P. A. Volkov, and M. V. Fedorov, arXiv:0801.0689v1.

  18. D. Strekalov, A. B. Matsko, A. A. Savchenkov, and L. Maleki, Phys. Rev. A: At., Mol., Opt. Phys. 71, 041803(R) (2005).

  19. C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 243601 (2004).

    Google Scholar 

  20. O. A. Ivanova, T. Sh. Iskhakov, A. N. Penin, and M. V. Chekhova, Kvantovaya Élektron. (Moscow) 36,951 (2006).

    Article  Google Scholar 

  21. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, Phys. Rev. A: At., Mol., Opt. Phys. 64, 063815 (2001).

    Google Scholar 

  22. V. P. Karasev and A. V. Masalov, Opt. Spektrosk. 74(5), 928 (1993) [Opt. Spectrosc. 74 (5), 551 (1993)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Chekhova.

Additional information

Original Russian Text © G.O. Rytikov, M.V. Chekhova, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 6, pp. 1082–1092.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rytikov, G.O., Chekhova, M.V. Detection of two-mode compression and degree of entanglement in continuous variables in parametric scattering of light. J. Exp. Theor. Phys. 107, 923–932 (2008). https://doi.org/10.1134/S1063776108120029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108120029

PACS numbers

Navigation