Skip to main content
Log in

Origin of “Hot Spots” in the pseudogap regime of Nd1.85Ce0.15CuO4: An LDA + DMFT + Σk study

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The material-specific electronic band structure of the electron-doped high- T c cuprate Nd1.85Ce0.15CuO4 (NCCO) is calculated in the pseudogap regime using the recently developed generalized LDA + DMFT + Σ k scheme. The LDA/DFT (density-functional theory within local density approximation) provides model parameters (hopping integral values and local Coulomb interaction strength) for the one-band Hubbard model, which is solved by the DMFT (dynamical mean-field theory). To take pseudogap fluctuations into account, the LDA + DMFT is supplied with an “external” k-dependent self-energy Σ k that describes interaction of correlated conducting electrons with nonlocal Heisenberg-like antiferromagnetic (AFM) spin fluctuations responsible for the pseudogap formation. Within this LDA + DMFT + Σ k approach, we demonstrate the formation of pronounced hot spots on the Fermi surface (FS) map in NCCO, opposite to our recent calculations for Bi2Sr2CaCu2O8 − δ (Bi2212), which have produced a rather extended region of the FS “destruction.” There are several physical reasons for this fact: (i) the hot spots in NCCO are located closer to the Brillouin zone center; (ii) the correlation length ξ of AFM fluctuations is longer for NCCO; (iii) the pseudogap potential Δ is stronger than in Bi2212. Comparison of our theoretical data with recent bulk-sensitive high-energy angle-resolved photoemission (ARPES) data for NCCO provides good semiquantitative agreement. Based on that comparison, an alternative explanation of the van Hove singularity at −0.3 eV is proposed. Optical conductivity for both Bi2212 and NCCO is also calculated within the LDA + DMFT + Δ k scheme and is compared with experimental results, demonstrating satisfactory agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999); M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001) [Phys.—Usp. 44, 515 (2001)].

    Article  ADS  Google Scholar 

  2. A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003); J. C. Campuzano, M. R. Norman, and M. Randeria, in Physics of Superconductors, Ed. by K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2004), Vol. II, p. 167; J. Fink, S. Borisenko, A. Kordyuk, et al., arXiv:cond-mat/0512307; X. J. Zhou, T. Cuk, T. Devereaux, et al., arXiv:cond-mat/0604284.

    Article  ADS  Google Scholar 

  3. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Pis’ma Zh. Éksp. Teor. Fiz. 82(4), 217 (2005) [JETP Lett. 82 (4), 198 (2005)].

    Google Scholar 

  5. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, et al., Phys. Rev. B: Condens. Matter 72, 155105 (2005).

    Google Scholar 

  6. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Low Temp. Phys. 32, 528 (2006).

    Article  Google Scholar 

  7. J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. B: Condens. Matter 60, 667 (1999).

    ADS  Google Scholar 

  8. É. Z. Kuchinskiĭ and M. V. Sadovskiĭ, Zh. Eksp. Teor. Fiz. 115(2), 1765 (1999) [JETP 88 (2), 347 (1999)].

    Google Scholar 

  9. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  10. K. Held, I. A. Nekrasov, G. Keller, et al., Psi-k Newsletter 56, 65 (2003) [psi-k.dl.ac.uk/newsletters/News_56/Highlight_56.pdf]; K. Held, Adv. Phys. 56, 829 (2007).

    Google Scholar 

  11. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975); H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B: Condens. Matter 21, 1003 (1980); Phys. Rev. B: Condens. Matter 21, 1044 (1980); A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).

    Article  ADS  Google Scholar 

  12. R. Bulla, A. C. Hewson, and Th. Pruschke, J. Phys.: Condens. Matter 10, 8365 (1998).

    Article  ADS  Google Scholar 

  13. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B: Condens. Matter 75, 115102 (2007).

    Google Scholar 

  14. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 133(3), 670 (2008) [JETP 106 (3), 581 (2008)].

    Google Scholar 

  15. E. Z. Kuchinskii, I. A. Nekrasov, Z. V. Pchelkina, and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 131(5), 908 (2007) [JETP 104 (5), 792 (2007)]; I. A. Nekrasov, E. Z. Kuchinskii, Z. V. Pchelkina, and M. V. Sadovskii, Physica C (Amsterdam) 460–462, 997 (2007).

    Google Scholar 

  16. M. V. Sadovskiĭ, Zh. Eksp. Teor. Fiz. 77(5), 2070 (1979) [Sov. Phys. JETP 50 (5), 989 (1979)].

    Google Scholar 

  17. M. V. Sadovskiĭ and N. A. Strigina, Zh. Éksp. Teor. Fiz. 122(3), 610 (2002) [JETP 95, 526 (2002)].

    Google Scholar 

  18. J. M. Tarascon, Y. Le Page, P. Barboux, et al., Phys. Rev. B: Condens. Matter 37, 9382 (1988); S. A. Sunshine, T. Siegrist, L. F. Schneemeyer, et al., Phys. Rev. B: Condens. Matter 38, 893 (1988).

    ADS  Google Scholar 

  19. T. Kamiuama, Physica C (Amsterdam) 229, 377 (1994).

    ADS  Google Scholar 

  20. O. K. Anderson, Phys. Rev. B: Solid State 12, 3060 (1975); O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    ADS  Google Scholar 

  21. M. Hybertsen and L. Mattheiss, Phys. Rev. Lett. 60, 1661 (1988).

    Article  ADS  Google Scholar 

  22. S. Massidda, N. Hamada, Jaejun Yu, and A. J. Freeman, Physica C (Amsterdam) 157, 571 (1989); S. Matsuno and H. Kanimura, J. Supercond. 7, 517 (1994).

    ADS  Google Scholar 

  23. N. Marzari and D. Vanderbilt, Phys. Rev. B: Condens. Matter 56, 12847 (1997); Wei Ku, H. Rosner, W. E. Pickett, and R. T. Scalettar, Phys. Rev. Lett. 89, 167204 (2002).

    ADS  Google Scholar 

  24. V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, et al., Phys. Rev. B: Condens. Matter 71, 125119 (2005).

    Google Scholar 

  25. O. K. Andersen and T. Saha-Dasgupta, Phys. Rev. B: Condens. Matter 62, R16219 (2000); O. K. Andersen, T. Saha-Dasgupta, S. Ezhov, et al., Psi-k Newsletter 45, 86 (2001); O. K. Andersen, T. Saha-Dasgupta, and S. Ezhov, Bull. Mater. Sci. 26, 19 (2003).

  26. M. Korshunov, A. Gavrichkov, S. G. Ovchinnikov, et al., Zh. Éksp. Teor. Fiz. 126(3), 642 (2004) [JETP 99 (3), 559 (2004)]; M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, et al., J. Phys.: Condens. Matter 19, 486203 (2007).

    Google Scholar 

  27. O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995).

    Article  ADS  Google Scholar 

  28. O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen, Phys. Rev. B: Condens. Matter 39, 1708 (1989).

    ADS  Google Scholar 

  29. N. M. Plakida and V. S. Oudovenko, Zh. Éksp. Teor. Fiz. 131(2), 259 (2007) [JETP 104 (2), 230 (2007)].

    Google Scholar 

  30. I. A. Nekrasov, K. Held, N. Blümer, et al., Eur. Phys. J. B 18, 55 (2000).

    Article  ADS  Google Scholar 

  31. I. A. Zobkalo, A. G. Gukasov, S. Yu. Kokovin, et al., Solid State Commun. 80, 921 (1991); E. M. Motoyama, G. Yu, I. M. Vishik, et al., Nature (London) 445, 186 (2007).

    Article  ADS  Google Scholar 

  32. M. V. Sadovskii, E. Z. Kuchinskii, and I. A. Nekrasov, Physica C (Amsterdam) 460–462, 1084 (2007).

    Google Scholar 

  33. N. P. Armitage, F. Ronning, D. H. Lu, et al., Phys. Rev. Lett. 88, 257001 (2002).

    Google Scholar 

  34. A. Kaminski, H. M. Fretwell, M. R. Norman, et al., Phys. Rev. B: Condens. Matter 88, 257001 (2002).

    Google Scholar 

  35. I. A. Nekrasov, E. E. Kokorina, E. Z. Kuchinskii, et al., arXiv:0708.2313.

  36. S. V. Borisenko, M. S. Golden, S. Legner, et al., Phys. Rev. Lett. 84, 4453 (2000).

    Article  ADS  Google Scholar 

  37. M. Tsunekawa, A. Sekiyama, S. Kasai, et al., J. Electron Spectrosc. Relat. Phenom. 144–147, 541 (2005); M. Tsunekawa, A. Sekiyama, S. Kasai, et al., New J. Phys. 10, 073005 (2008).

    Article  Google Scholar 

  38. Y. Onose, Y. Taguchi, K. Ishizaka, and Y. Tokura, Phys. Rev. Lett. 87, 217001 (2001).

    Google Scholar 

  39. M. A. Quijada, D. B. Tanner, R. J. Kelley, et al., Phys. Rev. B: Condens. Matter 60, 14917 (1999).

    Google Scholar 

  40. Y. M. Vilk and A.-M. S. Tremblay, J. Phys. I 7, 1309 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Nekrasov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokorina, E.E., Kuchinskii, E.Z., Nekrasov, I.A. et al. Origin of “Hot Spots” in the pseudogap regime of Nd1.85Ce0.15CuO4: An LDA + DMFT + Σk study. J. Exp. Theor. Phys. 107, 828–838 (2008). https://doi.org/10.1134/S1063776108110137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108110137

PACS numbers

Navigation