Skip to main content
Log in

Elastic properties of crystalline and liquid gallium at high pressures

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The elastic properties of gallium, such as the bulk modulus B, the shear modulus G, and the Poisson’s ratio σ, are investigated and the relative change in the volume is determined in the stability regions of the Ga I, Ga II, and liquid phases at pressures of up to 1.7 GPa. The observed lines of the Ga I-Ga II phase transition and the melting curves of the Ga I and Ga II phases are in good agreement with the known phase diagram of gallium; in this case, the coordinates of the Ga I-Ga II-melt triple point are determined to be 1.24 ± 0.40 GPa and 277 ± 2 K. It is shown that the Ga I-Ga II phase transition is accompanied by a considerable decrease in the moduli B (by 30%) and G (by 55%) and an increase in the density by 5.7%. The Poisson’s ratio exhibits a jump from typically covalent values of approximately 0.22–0.25 to values of approximately 0.32–0.33, which are characteristic of metals. The observed behavior of the elastic characteristics is described in the framework of the model of the phase transition from a “quasi-molecular” (partially covalent) metal state to a “normal” metal state. An increase in the Poisson’s ratio in the Ga I phase from 0.22 to 0.25 with an increase in the pressure can be interpreted as a decrease in the degree of covalence, i.e., the degree of spatial anisotropy of the electron density along the bonds, whereas the large value of the pressure derivative of the bulk modulus (equal to approximately 8) observed up to the transition to the Ga II phase or the melt is associated not only with the quasicovalent nature of the Ga I phase but also with the structural features. In view of the presence of seven neighbors for each gallium atom in the Ga I phase, the gallium lattice can be treated as a structure intermediate between typical open-packed and close-packed structures. Premelting effects, such as a flattening of the isothermal dependence of the shear modulus G(p) with increasing pressure and an increase in the slope of the isobaric dependences G(T) with increasing temperature, are revealed in the vicinity of the melting curve. The bulk modulus of liquid gallium near the melting curve proves to be rather close to the corresponding values for the normal metal Ga II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Smithles, Metals Reference Book (Butterworth, London, 1976; Metallurgiya, Moscow, 1980).

    Google Scholar 

  2. A. R. Ubbelohde, The Molten State of Matter (Wiley, New York, 1978; Metallurgiya, Moscow, 1982).

    Google Scholar 

  3. R. W. Powell, M. J. Woodman, and R. P. Tye, Br. J. Appl. Phys. 14, 432 (1963).

    Article  ADS  Google Scholar 

  4. X. G. Gong, G. L. Chiarotti, M. Parrinello, et al., Phys. Rev. B: Condens. Matter 43, 14277 (1991).

    Google Scholar 

  5. U. Haubermann, S. I. Simak, I. A. Abrikosov, et al., Chem.-Eur. J. 3, 904 (2000).

    Article  Google Scholar 

  6. D. A. Walko, I. K. Robinson, C. Grutter, et al., Phys. Rev. Lett. 81, 626 (1998).

    Article  ADS  Google Scholar 

  7. O. Zuger and U. Durig, Phys. Rev. B: Condens. Matter 46, 7319 (1992).

    ADS  Google Scholar 

  8. M. Bernasconi, G. L. Chiarotti, and E. Tosatti, Phys. Rev. B: Condens. Matter 52, 9988 (1995).

    ADS  Google Scholar 

  9. J. Donohue, The Structure of the Elements (Wiley, New York, 1974).

    Google Scholar 

  10. R. Kofman, P. Cheyssac, and J. Richard, Phys. Rev. B: Condens. Matter: Solid State 16, 5216 (1977).

    ADS  Google Scholar 

  11. F. Greuter and P. Oelhafen, Z. Phys. B: Condens. Matter Quanta 34, 123 (1979).

    Article  ADS  Google Scholar 

  12. O. Schulte and W. B. Holzapfel, Phys. Rev. B: Condens. Matter 55, 8122 (1997).

    ADS  Google Scholar 

  13. L. Bosio, J. Chem. Phys. 68, 1221 (1978).

    Article  ADS  Google Scholar 

  14. K. Takemura, K. Kobayashi, and M. Arai, Phys. Rev. B: Condens. Matter 58, 2482 (1998).

    Google Scholar 

  15. Z. Li and J. S. Tse, Phys. Rev. B: Condens. Matter 62, 9900 (2000).

    ADS  Google Scholar 

  16. L. Comez, A. DiCicco, J. P. Itie, and A. Polian, Phys. Rev. B: Condens. Matter 65, 014114 (2001).

    Google Scholar 

  17. O. Degtyareva, M. I. McMahon, D. R. Allan, et al., Phys. Rev. Lett. 93, 205502 (2004).

    Google Scholar 

  18. J. M. Perez-Mato, L. Elcoro, M. I. Aroyo, et al., Phys. Rev. Lett. 97, 115501 (2006).

    Google Scholar 

  19. J. M. Holender, M. J. Gillan, M. C. Payne, et al., Phys. Rev. B: Condens. Matter 52, 967 (1995).

    ADS  Google Scholar 

  20. S.-F. Tsay and S. Wang, Phys. Rev. B: Condens. Matter 50, 108 (1994).

    ADS  Google Scholar 

  21. P. Ascarelli, Phys. Rev. 143, 36 (1966).

    Article  ADS  Google Scholar 

  22. V. M. Nield, R. L. McGreevy, and M. G. Tucker, J. Phys.: Condens. Matter 10, 3293 (1998).

    Article  ADS  Google Scholar 

  23. M. C. Bellissent-Funel, P. Chieux, D. Levesque, et al., Phys. Rev. A: At., Mol., Opt. Phys. 39, 6310 (1989).

    ADS  Google Scholar 

  24. K. Tsuji, J. Non-Cryst. Solids 117, 27 (1990).

    Article  ADS  Google Scholar 

  25. G. Gong, G. L. Chiarotti, M. Parrinello, et al., Europhys. Lett. 21, 469 (1993).

    Article  ADS  Google Scholar 

  26. V. V. Brazhkin, A. G. Lyapin, and R. J. Hemley, Philos. Mag. A 82, 231 (2002).

    ADS  Google Scholar 

  27. E. L. Gromnitskaya, O. V. Stal’gorova, A. G. Lyapin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 78(8), 960 (2003) [JETP Lett. 78 (8), 488 (2003)].

    Google Scholar 

  28. F. F. Voronov and O. V. Stal’gorova, Fiz. Tverd. Tela (Leningrad) 33(2), 386 (1991) [Sov. Phys. Solid State 33 (2), 223 (1991)].

    Google Scholar 

  29. V. A. Goncharova and E. V. Chernysheva, Fiz. Tverd. Tela (St. Petersburg) 36(9), 2539 (1994) [Phys. Solid State 36 (9), 1382 (1994)].

    Google Scholar 

  30. R. Ravelo and M. Baskes, Phys. Rev. Lett. 79, 2482 (1997).

    Article  ADS  Google Scholar 

  31. W. B. Waeber, J. Phys. C: Solid State Phys. 2, 903 (1969).

    Article  ADS  Google Scholar 

  32. L. Bosio, R. Cortes, J. R. D. Copley, et al., J. Phys. F: Met. Phys. 11, 2261 (1981).

    Article  ADS  Google Scholar 

  33. V. P. Glagoleva, A. P. Zvyagina, and F. V. Tkhom, Fiz. Tverd. Tela (Leningrad) 10(11), 3480 (1968) [Sov. Phys. Solid State 10 (11), 2764 (1968)].

    Google Scholar 

  34. K. R. Lyall and J. F. Cochran, Can. J. Phys. 49, 1075 (1971).

    ADS  Google Scholar 

  35. V. P. Mikhal’chenko, I. M. Rarenko, and B. M. Sharlaĭ, Ukr. Fiz. Zh. 17, 1203 (1972).

    Google Scholar 

  36. T. J. Langill and J. Trivisonno, Can. J. Phys. 53, 581 (1975).

    ADS  Google Scholar 

  37. A. F. Skryshevskioe, Structural Analysis of Liquids and Amorphous Bodies (Vysshaya Shkola, Moscow, 1980) [in Russian].

    Google Scholar 

  38. M. W. Guinan and D. J. Steinberg, J. Phys. Chem. Solids 35, 1501 (1974).

    Article  ADS  Google Scholar 

  39. K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B: Condens. Matter 66, 035205 (2002).

    Google Scholar 

  40. O. V. Stal’gorova, E. L. Gromnitskaya, D. R. Dmitriev, and F. F. Voronov, Prib. Tekh. Éksp. 39(6), 115 (1996) [Instrum. Exp. Tech. 39 [6], 880 (1996)].

    Google Scholar 

  41. E. L. Gromnitskaya, O. V. Stal’gorova, V. V. Brazhkin, et al., Phys. Rev. B: Condens. Matter 64, 094205 (2001).

    Google Scholar 

  42. A. Jayaraman, W. Klement, Jr., R. C. Newton, et al., J. Phys. Chem. Solids 24, 7 (1963).

    Article  ADS  Google Scholar 

  43. P. W. Bridgman, Phys. Rev. 48, 825 (1935).

    Article  ADS  Google Scholar 

  44. L. F. Vereshchagin, S. S. Kabalkina, and Z. V. Troitskaya, Dokl. Akad. Nauk SSSR 158, 1061 (1964) [Sov. Phys. Dokl. 9, 894 (1964)].

    Google Scholar 

  45. M. Hida, H. Maeda, N. Kamijo, et al., J. Non-Cryst. Solids 61–62, 415 (1984).

    Article  Google Scholar 

  46. I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elastic Moduli of Metals and Nonmetals: A Reference Book (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  47. A. G. Lyapin and V. V. Brazhkin, Phys. Rev. B: Condens. Matter 54, 12036 (1996).

    ADS  Google Scholar 

  48. F. Diederich, Nature (London) 369, 199 (1994).

    Article  ADS  Google Scholar 

  49. M. Pasternak, J. N. Farrell, and R. D. Taylor, Phys. Rev. Lett. 58, 575 (1987).

    Article  ADS  Google Scholar 

  50. A. San Miguel, H. Libotte, J. P. Gaspard, et al., Eur. Phys. J. B 17, 227 (2000).

    Article  ADS  Google Scholar 

  51. Y. Akahama, H. Kawamura, D. Häusermann, et al., Phys. Rev. Lett. 74, 4690 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. F. Yagafarov.

Additional information

Original Russian Text © A.G. Lyapin, E.L. Gromnitskaya, O.F. Yagafarov, O.V. Stal’gorova, V.V. Brazhkin, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 5, pp. 956–967.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyapin, A.G., Gromnitskaya, E.L., Yagafarov, O.F. et al. Elastic properties of crystalline and liquid gallium at high pressures. J. Exp. Theor. Phys. 107, 818–827 (2008). https://doi.org/10.1134/S1063776108110125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108110125

PACS numbers

Navigation