Skip to main content
Log in

Quantum entanglement in nitrosyl iron complexes

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Recent magnetic susceptibility measurements for polycrystalline samples of binuclear nitrosyl iron complexes, [Fe2(C3H3N2S)2(NO)4] (I) and [Fe2(SC3H5N2)2(NO)4] (II), suggest that quantum-mechanical entanglement of the spin degrees of freedom exists in these compounds. Entanglement E exists below the temperature T E that we have estimated for complexes I and II to be 80–90 and 110–120 K, respectively. Using an expression of entanglement in terms of magnetic susceptibility for a Heisenberg dimer, we find the temperature dependence of the entanglement for complex II. Having arisen at the temperature T E , the entanglement increases monotonically with decreasing temperature and reaches 90–95% in this complex at T = 25 K, when the side effects are still small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Mityugov, Usp. Fiz. Nauk 163(8), 103 (1993) [Phys.—Usp. 36 (8), 744 (1993)].

    Google Scholar 

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  3. The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, and Quantum Computation, Ed. by D. Bouwmeester, A. Ekert, and A. Zeilinger (Springer, Berlin, 2000; Postmarket, Moscow, 2002).

    MATH  Google Scholar 

  4. A. A. Kokin, Solid State Quantum Computers on Nuclear Spins (Computer Science Institute, Russian Academy of Sciences, Moscow, 2004) [in Russian].

    Google Scholar 

  5. K. A. Valiev, Usp. Fiz. Nauk 175(1), 3 (2005) [Phys.—Usp. 48 (1), 1 (2005)].

    Article  MathSciNet  Google Scholar 

  6. X. Wang and P. Zanardi, Phys. Lett. A 301, 1 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. R. A. Cowley, J. Phys.: Condens. Matter 15, 4143 (2003).

    Article  ADS  Google Scholar 

  8. Č. Brukner and V. Vedral, arXiv:quant-ph/0406040.

  9. M. Wieśniak, V. Vedral, and Č. Brukner, New J. Phys. 7, 258 (2005).

    Article  ADS  Google Scholar 

  10. L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008); arXiv:quant-ph/0703044.

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Wieśniak, Quantum Entanglement in Some Physical Systems, Dissertation (Gdańsk, 2007); arXiv:quant-ph/0710.1775.

  12. Č. Brukner, V. Vedral, and A. Zeilinger, Phys. Rev. A: At., Mol., Opt. Phys. 73, 012 110 (2006).

    Google Scholar 

  13. A. M. Souza, M. S. Reis, D. O. Soares-Pinto, et al., Phys. Rev. B: Condens. Matter 77, 104 402 (2008).

    Google Scholar 

  14. N. A. Sanina, S. M. Aldoshin, T. N. Rudneva, et al., J. Mol. Struct. 752, 110 (2005).

    Article  ADS  Google Scholar 

  15. N. A. Sanina, T. N. Rudneva, S. M. Aldoshin, et al., Izv. Akad. Nauk, Ser. Khim., No. 1, 28 (2007).

  16. A. F. Vanin, Usp. Fiz. Nauk 170(4), 455 (2000) [Phys.—Usp. 43 (4), 415 (2000)].

    Article  Google Scholar 

  17. N. A. Sanina and S. M. Aldoshin, Izv. Akad. Nauk, Ser. Khim., No. 11, 2326 (2004).

  18. T. N. Rudneva, “Synthesis and Investigation of the Structure and NO-Donor Activity of Nitrosyl Iron Complexes with 2-Mercaptoimidazoles,” Candidate’s Dissertation in Chemistry (Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 2007); http://www.icp.ac.ru/news/avtoref/070628_Rudneva.doc.

    Google Scholar 

  19. A. F. Shestakov, Yu. M. Shul’ga, N. S. Emel’yanova, et al., Izv. Akad. Nauk, Ser. Khim., No. 7, 1244 (2007).

  20. A. N. Vasil’ev, M. M. Markina, and E. A. Popova, Fiz. Nizk. Temp. (Kharkov) 31(3), 272 (2005) [Low Temp. Phys. 31 (3), 203 (2005)].

    Google Scholar 

  21. A. I. Smirnov and V. N. Glazkov, Zh. Éksp. Teor. Fiz. 132(4), 984 (2007) [JETP 105 (4), 861 (2007)].

    Google Scholar 

  22. B. Bleaney and K. D. Bowers, Proc. R. Soc. London, Ser. A 214, 451 (1952).

    Article  ADS  Google Scholar 

  23. R. L. Carlin, Magnetochemistry (Springer, New York, 1986; Mir, Moscow, 1989).

    Google Scholar 

  24. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A: At., Mol., Opt. Phys. 54, 3824 (1996).

    ADS  MathSciNet  Google Scholar 

  25. S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).

    Article  ADS  Google Scholar 

  26. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  ADS  Google Scholar 

  27. K. M. O’Connor and W. K. Wootters, Phys. Rev. A: At., Mol., Opt. Phys. 63, 052 302 (2002).

    Google Scholar 

  28. M. A. Nielsen, “Quantum Information Theory,” Dissertation (New Mexico, 1998); arXiv:quant-ph/0011036.

  29. M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett. 87, 017 901 (2001).

    Google Scholar 

  30. A. E. Dubinov, I. D. Dubinova, and S. K. Saĭkov, Lambert W-Function: Table of Integrals and Other Mathematical Properties (Sarov Physicotechnical Institute, Sarov, 2004).

    Google Scholar 

  31. S. I. Doronin, A. N. Pyrkov, and É. B. Fel’dman, Pis’ma Zh. Éksp. Teor. Fiz. 85(10), 627 (2007) [JETP Lett. 85 (10), 519 (2007)]; Zh. Éksp. Teor. Fiz. 132 (5), 1091 (2007) [JETP 105 (5), 953 (2007)].

    Google Scholar 

  32. A. F. Shestakov, Yu. M. Shul’ga, N. S. Emel’yanova, et al., Izv. Akad. Nauk, Ser. Khim., No. 12, 2053 (2006).

  33. R. F. Werner, Phys. Rev. A: At., Mol., Opt. Phys. 40, 4277 (1989).

    ADS  Google Scholar 

  34. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Feldman.

Additional information

Original Russian Text © S.M. Aldoshin, E.B. Feldman, M.A. Yurishchev, 2008, published in Zhurnal Éksperimental’noĭi Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 5, pp. 940–948.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldoshin, S.M., Feldman, E.B. & Yurishchev, M.A. Quantum entanglement in nitrosyl iron complexes. J. Exp. Theor. Phys. 107, 804–811 (2008). https://doi.org/10.1134/S1063776108110101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108110101

PACS numbers

Navigation