Skip to main content
Log in

Formation of phase domain structures in thin films under conditions of a first-order magnetic phase transition

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper reports on the results of a theoretical investigation into the magnetic and resonance properties of thin films in the range of the transition from a paramagnetic state to a ferromagnetic state in the case where the magnetic transition is a first-order phase transformation. It is demonstrated that, in an external magnetic field directed perpendicular to the film plane, the formation of a specific domain structure consisting of domains of the coexisting paramagnetic and ferromagnetic phases can appear to be energetically favorable. The parameters of the equilibrium system of stripe phase domains and their dependences on the temperature, the magnetic field, and the characteristics of the material are calculated. The specific features of the magnetic resonance spectra under the conditions of formed stripe phase domains are considered. A relationship is derived for the dependence of the resonance field of the system of ferromagnetic domains on the magnetization and temperature. It is shown that the alternating external field can fulfill an orientation function in the formation of stripe phase domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Rodbell and C. P. Bean, J. Appl. Phys. 33, 1037 (1962).

    Article  ADS  Google Scholar 

  2. R. W. de Blois and D. S. Rodbell, Phys. Rev. 130, 1347 (1963).

    Article  ADS  Google Scholar 

  3. S. K. Banerjee, Phys. Lett. 12, 16 (1964).

    ADS  Google Scholar 

  4. K. Dörr, J. Phys. D: Appl. Phys. 39, R125 (2006).

    Article  Google Scholar 

  5. A. Vaterlaus, C. Stamm, U. Maier, et al., Phys. Rev. Lett. 84, 2247 (2000).

    Article  ADS  Google Scholar 

  6. M. Manekar, C. Mukherjee, and S. B. Roy, Eur. Phys. Lett. 80, 17004 (2007).

    Google Scholar 

  7. J. Leib, J. E. Snyder, C. C. H. Lo, et al., J. Appl. Phys. 91, 8852 (2002).

    Article  ADS  Google Scholar 

  8. Y. Narumi, K. Katsumata, T. Nakamura, et al., J. Phys.: Condens. Matter. 16, L57 (2004).

    Article  ADS  Google Scholar 

  9. Y. Takagaki, J. Herfort, L. Däwetritz, and K. H. Ploog, Phys. Rev. B: Condens. Matter 74, 224417 (2006).

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1980), Part 1.

    Google Scholar 

  11. V. G. Bar’yakhtar, I. M. Vitebskiĭ, and D. A. Yablonskiĭ, Fiz. Tverd. Tela (Leningrad) 19(2), 347 (1977) [Sov. Phys. Solid State 19 (2), 200 (1977)].

    Google Scholar 

  12. V. G. Bar’yakhtar, A. E. Borovik, V. A. Popov, and E. P. Stefanovskiĭ, Fiz. Tverd. Tela (Leningrad) 13(11), 3232 (1971) [Sov. Phys. Solid State 13 (11), 2718 (1971)].

    Google Scholar 

  13. V. S. Amaral, J. P. Araujo, Yu. G. Pogorelov, et al., J. Magn. Magn. Mater. 242–245, 655 (2002).

    Article  Google Scholar 

  14. P. Novak, M. Marysko, M. M. Savosta, and A. N. Ulyanov, Phys. Rev. B: Condens. Matter 60, 6655 (1999).

    ADS  Google Scholar 

  15. M. K. Chattopadhyay, S. B. Roy, and P. Chaddah, Phys. Rev. B: Condens. Matter 72, 180401 (2005).

    Google Scholar 

  16. F. C. Correia, J. P. Araujo, J. B. Sousa, et al., J. Magn. Magn. Mater. 272–276, 2370 (2004).

    Article  Google Scholar 

  17. N. P. Grazhdankina, Usp. Fiz. Nauk 96, 291 (1968) [Sov. Phys.—Usp. 11, 727 (1968)].

    Google Scholar 

  18. T. J. Swoboda, W. H. Cloud, T. A. Bither, et al., Phys. Rev. Lett. 4, 509 (1960).

    Article  ADS  Google Scholar 

  19. J. P. Bouchaud, R. Fruchart, R. Pauthenet, et al., J. Appl. Phys. 37, 971 (1966).

    Article  ADS  Google Scholar 

  20. Ch. Kittel, Phys. Rev. 120, 335 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  21. W. A. Doerner and R. B. Flippen, Phys. Rev. 137, A926 (1965).

    Article  ADS  Google Scholar 

  22. H. S. Jarrett, W. H. Cloud, F. J. Darnell, et al., J. Phys. Soc. Jpn. 17(Suppl. B1), 261 (1962).

    Google Scholar 

  23. K. P. Belov, Magnetic Transitions (Gostekhizdat, Moscow, 1958; Consultants Bureau, New York, 1961).

    Google Scholar 

  24. K. P. Belov, Elastic, Thermal, and Electrical Phenomena in Ferromagnetic Metals (Gostekhizdat, Moscow, 1951) [in Russian].

    Google Scholar 

  25. É. A. Zavadskiĭ and V. I. Val’kov, Magnetic Phase Transitions (Naukova Dumka, Kiev, 1980) [in Russian].

    Google Scholar 

  26. V. G. Bar’yakhtar and V. F. Klepikov, Fiz. Tverd. Tela (Leningrad) 14(5), 1478 (1972) [Sov. Phys. Solid State 14 (5), 1267 (1972)].

    Google Scholar 

  27. Yu. I. Dzhezherya and A. I. Tovstolytkin, J. Phys.: Condens. Matter. 19, 246212 (2007).

    Google Scholar 

  28. S. Kartha, J. A. Krumhansl, J. P. Sethna, and L. K. Wickham, Phys. Rev. B: Condens. Matter 52, 803 (1995).

    ADS  Google Scholar 

  29. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  30. K. W. Joh, C. H. Lee, C. E. Lee, et al., J. Phys.: Condens. Matter. 15, 4161 (2003).

    Article  ADS  Google Scholar 

  31. A. Tovstolytkin, A. Pogorily, A. Vovk, et al., J. Magn. Magn. Mater. 272–276, 1839 (2004).

    Article  Google Scholar 

  32. A. Singh, P. Chowdhury, N. Padma, et al., Solid State Commun. 137, 456 (2006).

    Article  ADS  Google Scholar 

  33. A. Shengelaya, G.-M. Zhao, H. Keller, et al., Phys. Rev. B: Condens. Matter 61, 5888 (2000).

    ADS  Google Scholar 

  34. A. I. Tovstolytkin, A. N. Pogorily, and S. M. Kovtun, Fiz. Nizk. Temp. (Kharkov) 25(12), 1282 (1999) [Low. Temp. Phys. 25 (12), 962 (1999)].

    Google Scholar 

  35. A. I. Tovstolytkin, Mater. Sci. Forum 373–376, 613 (2001).

    Article  Google Scholar 

  36. A. I. Tovstolytkin, A. M. Pogorily, D. I. Podyalovskii, et al., J. Appl. Phys. 102, 063902 (2007).

    Google Scholar 

  37. D. K. Aswal, A. Singh, R. M. Kadam, et al., Mater. Lett. 59, 728 (2005).

    Article  Google Scholar 

  38. T. L. Phan, N. D. Tho, M. H. Phand, et al., Physica B (Amsterdam) 371, 317 (2006).

    ADS  Google Scholar 

  39. A. I. Tovstolytkin, A. N. Pogorelyĭ, Yu. I. Dzhezherya, et al., in Proceedings of the XX Jubilee International School-Seminar on New Magnetic Materials for Microelectronics, Moscow, Russia, June 12–16, 2006 (Faculty of Physics, Moscow State University, Moscow, 2006), p. 654.

    Google Scholar 

  40. S. B. Roy, G. K. Perkins, M. K. Chattopadhyay, et al., Phys. Rev. Lett. 92, 147203 (2004).

    Google Scholar 

  41. J. D. Moore, G. K. Perkins, Y. Bugoslavsky, et al., Phys. Rev. B: Condens. Matter 73, 144426 (2006).

    Google Scholar 

  42. W. Wu, C. Israel, N. Hur, et al., Nat. Mater. 5, 881 (2006).

    Article  ADS  Google Scholar 

  43. S. A. Cannas, D. A. Stariolo, and F. A. Tamarit, Phys. Rev. B: Condens. Matter 69, 092409 (2004).

    Google Scholar 

  44. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC Press, Boca Raton, FL, United States, 1996).

    Google Scholar 

  45. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  46. A. P. Prudnikov, Yu. A. Bychkov, and O. I. Marichev, Integrals and Series (Nauka, Moscow, 1981; Gordon and Breach, New York, 1986).

    MATH  Google Scholar 

  47. N. O. Moreno, P. G. Pagliuso, C. Rettory, et al., Phys. Rev. B: Condens. Matter 63, 174413 (2001).

    Google Scholar 

  48. E. Winkler, M. T. Causa, and C. A. Ramos, Physica B (Amsterdam) 398, 434 (2007).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Tovstolytkin.

Additional information

Original Russian Text © Yu.I. Dzhezherya, A.I. Tovstolytkin, 2008, published in Zhurnal Éksperimental’noĭi Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 5, pp. 930–939.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzhezherya, Y.I., Tovstolytkin, A.I. Formation of phase domain structures in thin films under conditions of a first-order magnetic phase transition. J. Exp. Theor. Phys. 107, 794–803 (2008). https://doi.org/10.1134/S1063776108110095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108110095

PACS numbers

Navigation