Skip to main content
Log in

Phase transition in the vortex structure of granular YBa2Cu3O7 − δ HTSCs in weak magnetic fields

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This study aims at establishing the interrelation between the current-carrying capacity and peculiarities of magnetoresistance of granular YBa2Cu3O7 − δ HTSCs (T c = 92.5 K). The transverse magnetoresistance of several batches of YBa2Cu3O7 − δ HTSC samples with noticeably different values of critical supercurrent density j c is measured in magnetic fields H ext up to H maxext ≈ 500 Oe in a wide range of transport currents (5 mA ≤ I ≤ 1600 mA) at T = 77.4 K. Samples with relatively high values of j c (H ext = 0) ≥ 100 A/cm2 do not exhibit any anomalies in their field dependences. Magnetoresistance jumps δρBG-VG273K are observed for samples with low values of j c ≥ 20 A/cm2 in fields H BG-VG ≈ 200–260 Oe. The width ΔH BG-VG of the anomalous resistance region increases upon an increase in I. The magnetoresistance jumps decrease with increasing I in increasing field H ext(0 → H maxext ) and increase in decreasing field H ext(H maxext → 0). It is found that these peculiarities of the field dependences of magnetoresistance are associated with a first-order phase transition (in magnetic field) in the vortex structure of YBa2Cu3O7 − δ HTSCs of the Bragg glass-vortex glass type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Fiz. Tverd. Tela (St. Petersburg) 46(10), 1740 (2004) [Phys. Solid State 46 (10), 1798 (2004)].

    Google Scholar 

  2. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Fiz. Tverd. Tela (St. Petersburg) 49(10), 1744 (2007) [Phys. Solid State 49 (10), 1829 (2007)].

    Google Scholar 

  3. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel, Funct. Mater. 11, 710 (2004).

    Google Scholar 

  4. T. V. Sukhareva and V. A. Finkel’, Fiz. Tverd. Tela (St. Petersburg) 50(3), 961 (2008) [Phys. Solid State 50 (3), 1001 (2008)].

    Google Scholar 

  5. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Zh. Tekh. Fiz. 78(3), 36 (2008) [Tech. Phys. 53 (3), 321 (2008)].

    Google Scholar 

  6. D. Daghero, P. Mazzett, A. Stepanescu, and A. Masoero, Phys. Rev. B: Condens. Matter 66, 184514 (2002).

    Google Scholar 

  7. A. Kiliç, K. Kiliç, H. Yetiş, and O. Çetin, J. Appl. Phys. 95, 1924 (2004); New J. Phys. 7, 212 (2005).

    Article  ADS  Google Scholar 

  8. C. A. M. dos Santos, M. S. da Luz, B. Ferreira, and A. J. S. Machado, Physica C (Amsterdam) 391, 345 (2003).

    ADS  Google Scholar 

  9. P. Muné, F. C. Fonseca, R. Mucillo, and R. F. Jardim, Physica C (Amsterdam) 390, 363 (2003).

    ADS  Google Scholar 

  10. D. A. Balaev, K. A. Shaihutdinov, S. I. Popkov, and M. I. Petrov, Pis’ma Zh. Tekh. Fiz. 29(14), 15 (2003) [Tech. Phys. Lett. 29 (7), 578 (2003)]; D. A. Balaev, K. A. Shaihutdinov, S. I. Popkov, et al., Supercond. Sci. Technol. 17, 175 (2004).

    Google Scholar 

  11. G. L. Olivera, C. A. M. dos Santos, C. Y. Shigue, and A. J. S. Machado, IEEE Trans. Appl. Supercond. 12, 1272 (2002).

    Article  Google Scholar 

  12. T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 72, 1530 (1994); Phys. Rev. B: Condens. Matter 52, 1242 (1995); Phys. Rev. B: Condens. Matter 55, 6577 (1997).

    Article  ADS  Google Scholar 

  13. T. Klein, I. Joumard, S. Blanchard, et al., Nature (London) 413, 404 (2001).

    Article  ADS  Google Scholar 

  14. A. D. Hernández and D. Domínguez, Phys. Rev. Lett. 92, 117002 (2004); Physica C (Amsterdam) 408-410, 489 (2004).

    Google Scholar 

  15. D. Li and B. Rosenstein, Phys. Rev. Lett. 90, 167004 (2003).

    Google Scholar 

  16. E. H. Brandt and G. P. Mikitik, Supercond. Sci. Technol. 14, 651 (2001).

    Article  ADS  Google Scholar 

  17. T. H. Johansen, M. B. Koblischka, H. Bratsberg, and P. O. Hetland, Phys. Rev. B: Condens. Matter 56, 11273 (1997).

    ADS  Google Scholar 

  18. K. Deligiannis, P. A. L. de Groot, S. Pinfold, et al., Phys. Rev. Lett. 79, 2121 (1997).

    Article  ADS  Google Scholar 

  19. T. Nishizaki, T. Naito, and N. Kobayashi, Phys. Rev. B: Condens. Matter 58, 11169 (1998).

    Google Scholar 

  20. D. Giller, A. Shaulov, Y. Yeshurun, and J. Giapintzakis, Phys. Rev. B: Condens. Matter 60, 106 (1999); Y. Radzyner, S. B. Roy, D. Giller, et al., Phys. Rev. B: Condens. Matter 61, 14362 (2000); S. B. Roy, Y. Radzyner, D. Giller, et al., Physica C (Amsterdam) 390, 46 (2003).

    ADS  Google Scholar 

  21. Z. H. Wang, Physica C (Amsterdam) 306, 253 (1998).

    ADS  Google Scholar 

  22. M. Acosta, V. Sosa, and C. Acosta, Superficies y Vacío 12, 12 (2001).

    Google Scholar 

  23. S. I. Bondarenko, N. Nakagawa, A. A. Shablo, and P. P. Pavlov, Physica B (Amsterdam) 329–333, 1512 (2003); S. I. Bondarenko, A. A. Shablo, and V. P. Koverya, Fiz. Nizk. Temp. (Kharkov) 32 (7), 825 (2006) [Low Temp. Phys. 32 (7), 628 (2006)].

    Google Scholar 

  24. L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, Phys. Rev. B: Condens. Matter 47, 470 (1993).

    ADS  Google Scholar 

  25. M. Tinkham and C. J. Lobb, Solid State Phys. 42, 91 (1989).

    Article  Google Scholar 

  26. J. R. Clem, Physica C (Amsterdam) 153–155, 50 (1988).

    Google Scholar 

  27. V. A. Finkel’, V. M. Arzhavitin, A. A. Blinkin, et al., Physica C (Amsterdam) 235–240, 303 (1994).

    Google Scholar 

  28. V. A. Finkel’ and V. V. Toryanik, Fiz. Nizk. Temp. (Kharkov) 23(8), 824 (1997) [Low Temp. Phys. 23 (8), 618 (1997)]; V. A. Finkel’ and V. V. Derevyanko, Fiz. Nizk. Temp. (Kharkov) 26 (2), 128 (2000) [Low Temp. Phys. 26 (2), 92 (2000)].

    Google Scholar 

  29. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Fiz. Tverd. Tela (St. Petersburg) 48(8), 1374 (2006) [Phys. Solid State 48 (8), 1455 (2006)].

    Google Scholar 

  30. M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, and L. C. Wilcocks, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 011917 (2001); M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 061910 (2005).

  31. N. Pesheva and J. de Coninck, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 70, 046102 (2004).

  32. M. J. Espín, Á. V. Delgado, and F. González-Caballero, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 041503 (2006).

    Google Scholar 

  33. N. N. Efimova, Yu. A. Popkov, M. B. Ustimenkova, and V. A. Finkel’, Fiz. Nizk. Temp. (Kharkov) 20(4), 343 (1994) [Low. Temp. Phys. 20 (4), 273 (1994)].

    Google Scholar 

  34. D. A. Balaev, D. M. Gokhfeld, A. A. Dubrovskiĭ, et al., Zh. Éksp. Teor. Fiz. 132(6), 1340 (2007) [JETP 105 (6), 1174 (2007)].

    Google Scholar 

  35. H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys. 74, 485 (2002).

    Article  ADS  Google Scholar 

  36. J. Halbritter, Phys. Rev. B: Condens. Matter 48, 9735 (1993).

    ADS  Google Scholar 

  37. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, et al., Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Finkel.

Additional information

Original Russian Text © T.V. Sukhareva, V.A. Finkel, 2008, published in Zhurnal Éksperimental’noĭi Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 5, pp. 922–929.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhareva, T.V., Finkel, V.A. Phase transition in the vortex structure of granular YBa2Cu3O7 − δ HTSCs in weak magnetic fields. J. Exp. Theor. Phys. 107, 787–793 (2008). https://doi.org/10.1134/S1063776108110083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108110083

PACS numbers

Navigation