Skip to main content
Log in

On the theory of diffraction radiation

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A macroscopic theory of diffraction radiation emerging when a charged point particle moves in the vicinity of a perfectly conducting screen is developed. The integral equations derived for radiation fields form the basis for analyzing the similarity and difference of diffraction of electromagnetic radiation and diffraction radiation from a charged particle. It is shown that in the case considered here, the widely used model in which the radiation field can be represented as the field of surface current has more stringent limits of application as compared to the classical theory of diffraction. This considerably restricts the applicability of the results obtained earlier using the double-layer method to only ultrarelativistic energies and to transit angles of particles close to the direction of the normal to the screen surface. The method developed here is used for analyzing familiar problems of diffraction radiation, such as radiation emerging during normal transit of a particle along the axis of a circular aperture in the screen, radiation emitted during oblique transit near a perfectly conducting half-plane, and radiation emitted during oblique transit of a particle through a rectangular slit in an infinitely large screen. In the latter case, the results obtained after the limiting transition to zero width of the slit completely coincide with the theory of transition radiation for arbitrary energies of the particle and its angle of incidence to the screen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Castellano, Nucl. Instrum. Methods Phys. Res., Sect. A 394, 275 (1997).

    Article  ADS  Google Scholar 

  2. J. Urakawa, H. Hayano, K. Kubo, et al., Nucl. Instrum. Methods Phys. Res., Sect A 472, 309 (2001).

    Article  ADS  Google Scholar 

  3. M. L. Ter-Mikaelyan, High-Energy Electromagnetic Processes in Condensed Media (Armenian Academy of Sciences, Yerevan, 1969; Wiley, New York, 1972).

    Google Scholar 

  4. P. V. Karataev, PhD Thesis (Tokyo Metropolitan University, Tokyo, 2004).

  5. P. V. Karataev, Phys. Lett. A 345, 428 (2005).

    Article  MATH  ADS  Google Scholar 

  6. D. Xiang, W.-H. Huang, Y.-Z. Lin, et al., Phys. Rev. Spec. Topics—Acell. Beams 11, 024 001 (2008).

    Google Scholar 

  7. A. P. Kazantsev and G. I. Surdutovich, Dokl. Akad. Nauk SSSR 147, 74 (1962) [Sov. Phys. Dokl. 7, 990 (1962)].

    Google Scholar 

  8. M. I. Ryazanov and I. S. Tilinin, Zh. Éksp. Teor. Fiz. 71(6), 2078 (1976) [Sov. Phys. JETP 44 (6), 1092 (1976)].

    ADS  Google Scholar 

  9. J. H. Brownell, J. Walsh, and G. Doucas, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 1075 (1998).

    Google Scholar 

  10. D. Sutterlin, D. Erni, M. Dehler, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 264, 361 (2007).

    Article  ADS  Google Scholar 

  11. V. E. Pafomov, Tr. Fiz. Inst. im. P. N. Lebedeva, Ross. Akad. Nauk XLIV, 28 (1969).

    Google Scholar 

  12. L. A. Vaĭnshteĭn, Electromagnetic Waves (Radio i Svyaz’, Moscow, 1988) [in Russian].

    Google Scholar 

  13. V. A. Fok, Problems of the Diffraction and Propagation of Electromagnetic Waves (LKI, Moscow, 2007) [in Russian].

    Google Scholar 

  14. D. M. Sedrakyan, Izv. Akad. Nauk Arm. SSR XVII, 113 (1964).

    Google Scholar 

  15. L. A. Vaĭnshteĭn, Theory of Diffraction and Methods of Factorization (Sov. Radio, Moscow, 1966) [in Russian].

    Google Scholar 

  16. J. Jackson, Classical Electrodynamics (Wiley, New York, 1962; Mir, Moscow, 1965).

    Google Scholar 

  17. V. L. Ginzburg and I. M. Frank, Zh. Éksp. Teor. Fiz. 16, 15 (1946).

    Google Scholar 

  18. B. M. Bolotovskiĭ and E. A. Galst’yan, Usp. Fiz. Nauk 170(8), 809 (2000) [Phys.—Usp. 43 (8), 755 (2000)].

    Article  Google Scholar 

  19. A. P. Potylitsyn and R. O. Rezaev, Nucl. Instrum. Methods Phys. Res., Sect. B 252, 44 (2006).

    Article  ADS  Google Scholar 

  20. D. V. Karlovets and A. P. Potylitsyn, Zh. Éksp. Teor. Fiz. 133(6), 1197 (2008) [JETP 106 (6), 1045 (2008)].

    Google Scholar 

  21. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941; Gostekhizdat, Moscow, 1948).

    MATH  Google Scholar 

  22. B. V. Khachatryan, Izv. Akad. Nauk Arm. SSR, Ser. Fiz-Mat. Nauki 18, 133 (1965).

    Google Scholar 

  23. W. R. Smythe, Electrostatics and Electrodynamics (McGraw-Hill, New York, 1950; Inostrannaya Literatura, Moscow, 1954).

    Google Scholar 

  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, London, 1959; Nauka, Moscow, 1973).

    MATH  Google Scholar 

  25. V. Bobrinev and V. Braginskiĭ, Dokl. Akad. Nauk SSSR 123, 634 (1958).

    Google Scholar 

  26. Yu. N. Dnestrovskiĭ and D. P. Kostomarov, Dokl. Akad. Nauk SSSR 124, 792 (1959).

    Google Scholar 

  27. Yu. N. Dnestrovskiĭ and D. P. Kostomarov, Dokl. Akad. Nauk SSSR 124, 1026 (1959).

    Google Scholar 

  28. V. A. Verzilov, Phys. Lett. A 273, 135 (2000).

    Article  ADS  Google Scholar 

  29. S. N. Dobrovolsky and N. F. Shulga, Nucl. Instrum. Methods Phys. Res., Sect. B 201, 123 (2003).

    Article  ADS  Google Scholar 

  30. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, London, 1980).

    Google Scholar 

  31. A. P. Potylitsyn, Nucl. Instrum. Methods Phys. Res., Sect. B 145, 169 (1998).

    Article  ADS  Google Scholar 

  32. R. B. Fiorito and D. W. Rule, Nucl. Instrum. Methods Phys. Res., Sect. B 173, 67 (2001).

    Article  ADS  Google Scholar 

  33. A. P. Potylitsyn and N. A. Potylitsyna, Izv. Vyssh. Uchebn. Zaved., Fiz. 43, 56 (2000).

    Google Scholar 

  34. G. A. Naumenko, A. P. Potylitsyn, and O. V. Chefonov, Nucl. Instrum. Methods Phys. Res., Sect. B 173, 88 (2001).

    Article  ADS  Google Scholar 

  35. M. I. Ryazanov, Pis’ma Zh. Éksp. Teor. Fiz. 39(12), 569 (1984) [JETP Lett. 39 (12), 698 (1984)].

    Google Scholar 

  36. N. Potylitsyna-Kube and X. Artru, Nucl. Instrum. Methods Phys. Res., Sect. B 201, 172 (2003).

    Article  ADS  Google Scholar 

  37. B. M. Bolotovskiĭ and G. V. Voskresenskiĭ, Usp. Fiz. Nauk 88, 209 (1966) [Sov. Phys.—Usp. 9, 73 (1966)].

    Google Scholar 

  38. B. M. Bolotovskiĭ and G. V. Voskresenskiĭ, Usp. Fiz. Nauk 94, 377 (1968) [Sov. Phys.—Usp. 11, 143 (1968)].

    Google Scholar 

  39. N. A. Korkhmazyan, Izv. Akad. Nauk Arm. SSR XV, 115 (1962).

    Google Scholar 

  40. A. G. Shkvarunets and R. B. Fiorito, Phys. Rev. Spec. Topics—Acell. Beams 11, 012 801 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Karlovets.

Additional information

Original Russian Text © D.V. Karlovets, A.P. Potylitsyn, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 5, pp. 887–901.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlovets, D.V., Potylitsyn, A.P. On the theory of diffraction radiation. J. Exp. Theor. Phys. 107, 755–768 (2008). https://doi.org/10.1134/S1063776108110058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108110058

PACS numbers

Navigation