Skip to main content
Log in

Investigation of atomic and molecular clustering in a pulsed gas-dynamic jet with a pyroelectric detector

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The clustering of atoms and molecules in a pulsed gas-dynamic jet has been investigated by the method of time-of-flight measurements performed with an uncooled pyroelectric detector (PED). The method is based on measuring the amplitude of the pyroelectric signal induced on the detector by a molecular (atomic) beam and the particle velocity in the beam as a function of the gas pressure above the nozzle. In addition, the number of molecules (atoms) emerging from the nozzle in a pulse has been measured. We describe the method and present the results of our studies on the clustering of He, Xe, CH4, CO2, and other gases. The peculiarities of the detection of molecular and cluster beams with PED are considered. We show that the described method allows the clustering threshold as a function of the gas pressure above the nozzle to be determined. We have established the threshold pressures at which particle clustering in the jet begins. Optimal conditions for the generation of intense cluster beams have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Pauly, Atom, Molecule, and Cluster Beams, Vol. II: Cluster Beams, Fast and Slow Beams, and Accessory Equipment and Applications (Springer, New York, 2000).

    Google Scholar 

  2. Atomic and Molecular Beam Methods, Ed. by G. Scoles (Oxford University Press, New York, 1988), Vol. 1.

    Google Scholar 

  3. Atomic and Molecular Beam Methods, Ed. by G. Scoles (Oxford University Press, New York, 1992), Vol. 2.

    Google Scholar 

  4. G. N. Makarov, Usp. Fiz. Nauk 176(2), 121 (2006) [Phys.—Usp. 49 (2), 117 (2006)].

    Article  Google Scholar 

  5. B. M. Smirnov, Usp. Fiz. Nauk 173(6), 609 (2003) [Phys.—Usp. 46 (6), 589 (2003)].

    Article  Google Scholar 

  6. G. N. Makarov, Usp. Fiz. Nauk 178(4), 337 (2008) [Phys.—Usp. 51 (4), 319 (2008)].

    Article  Google Scholar 

  7. W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).

    Article  ADS  Google Scholar 

  8. I. Yamada and N. Toyoda, Nucl. Instrum. Methods Phys. Res., Sect. B 232, 195 (2005).

    Article  ADS  Google Scholar 

  9. W. Fahrner, Nanotechnologie und Nanoprozesse (Springer, Berlin, 2003).

    Google Scholar 

  10. O. F. Hagena, in Gasdynamics, Molecular Beams, and Low Density Gasdynamics, Ed. by P. P. Wegener (Marcel Dekker, New York, 1974), p. 93.

    Google Scholar 

  11. M. Kappes and S. Leutwyler, in Atomic and Molecular Beam Methods, Ed. by G. Scoles (Oxford University Press, New York, 1988), Vol. 1, p. 380.

    Google Scholar 

  12. Clusters of Atoms and Molecules, Ed. by H. Haberland (Springer, Heidelberg, 1994), Vol. 1.

    Google Scholar 

  13. M. L. Mandrich, W. D. Reents, Jr., and V. E. Bondebey, in Atomic and Molecular Clusters, Ed. by E. R. Bernstein (Elsevier, Amsterdam, 1990), p. 69.

    Google Scholar 

  14. H. Pauly, in Atomic and Molecular Beam Methods, Ed. by G. Scoles (Oxford University Press, New York, 1988), Vol. 1, p. 83.

    Google Scholar 

  15. D. Bassi, in Atomic and Molecular Beam Methods, Ed. by G. Scoles (Oxford University Press, New York, 1988), Vol. 1, pp. 153, 168, 180.

    Google Scholar 

  16. M. Zen, in Atomic and Molecular Beam Methods, Ed. by G. Scoles (Oxford University Press, New York, 1988), Vol. 1, p. 254.

    Google Scholar 

  17. U. Hefter and K. Bergmann, in Atomic and Molecular Beam Methods, Ed. by G. Scoles, (Oxford University Press, New York, 1988), Vol. 1, p. 193.

    Google Scholar 

  18. V. M. Apatin, L. M. Dorozhkin, G. N. Makarov, and G. M. Pleshkov, Appl. Phys. B 29, 273 (1982).

    Article  ADS  Google Scholar 

  19. V. M. Apatin and G. N. Makarov, Zh. Éksp. Teor. Fiz. 84(1), 15 (1983) [Sov. Phys. JETP 57 (1), 8 (1983)].

    Google Scholar 

  20. G. N. Makarov, Usp. Fiz. Nauk 173(9), 913 (2003) [Phys.—Usp. 46 (9), 889 (2003)].

    Article  Google Scholar 

  21. G. N. Makarov, Usp. Fiz. Nauk 175(1), 41 (2005) [Phys.—Usp. 48 (1), 37 (2005)].

    Article  Google Scholar 

  22. V. M. Apatin, G. N. Makarov, and V. V. Nesterov, Pis’ma Zh. Éksp. Teor. Fiz. 73(12), 735 (2001) [JETP Lett. 73 (12), 651 (2001)].

    Google Scholar 

  23. V. M. Apatin, G. N. Makarov, and V. V. Nesterov, Chem. Phys. Lett. 347, 101 (2001).

    Article  ADS  Google Scholar 

  24. G. N. Makarov, Zh. Éksp. Teor. Fiz. 120(6), 1411 (2001) [JETP 93 (6), 1222 (2001)].

    Google Scholar 

  25. G. N. Makarov, Pis’ma Zh. Éksp. Teor. Fiz. 75(3), 159 (2002) [JETP Lett. 75 (3), 131 (2002)].

    Google Scholar 

  26. G. N. Makarov, Chem. Phys. Lett. 366, 490 (2002).

    Article  ADS  Google Scholar 

  27. G. N. Makarov, Zh. Éksp. Teor. Fiz. 123(2), 276 (2003) [JETP 96 (2), 241 (2003)].

    Google Scholar 

  28. R. V. Ambartzumian, L. M. Dorozhkin, G. N. Makarov, et al., Appl. Phys. 22, 409 (1980).

    Article  ADS  Google Scholar 

  29. R. G. Gallagher and J. B. Fenn, J. Chem. Phys. 60, 3487 (1974).

    Article  ADS  Google Scholar 

  30. J. B. Anderson, in Gasdynamics, Molecular Beams, and Low Density Gasdynamics, Ed. by P. P. Wegener (Marcel Dekker, New York, 1974), p. 1.

    Google Scholar 

  31. CRC Handbook of Chemistry and Physics, Editor in Chief D. R. Lide, 74th ed. (CRC Press, Boca Raton, FL, United States, 1993–1994).

    Google Scholar 

  32. W. R. Gentry and C. F. Giese, Rev. Sci. Instrum. 49, 595 (1978).

    Article  ADS  Google Scholar 

  33. G. N. Makarov and A. N. Petin, Zh. Éksp. Teor. Fiz. 119(1), 5 (2001) [JETP 92 (1), 1 (2001)].

    Google Scholar 

  34. G. N. Makarov, V. N. Lokhman, D. E. Malinovskiĭ, and D. D. Ogurok, Kvantovaya Élektron. (Moscow) 25, 545 (1998).

    Google Scholar 

  35. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).

    Google Scholar 

  36. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1967).

    Google Scholar 

  37. G. N. Abramovich, Applied Gas Dynamics (Nauka, Moscow, 1991), Part. 1 [in Russian].

    Google Scholar 

  38. G. N. Makarov and A. N. Petin, Kvantovaya Élektron. (Moscow) 30, 738 (2000).

    Article  Google Scholar 

  39. G. N. Makarov and A. N. Petin, Pis’ma Zh. Éksp. Teor. Fiz. 71(10), 583 (2000) [JETP Lett. 71 (10), 399 (2000)].

    Google Scholar 

  40. G. N. Makarov and A. N. Petin, Chem. Phys. Lett. 323, 345 (2000).

    Article  ADS  Google Scholar 

  41. G. N. Makarov, Zh. Tekh. Fiz. 72(12), 9 (2002) [Tech. Phys. 47 (12), 1495 (2002)].

    Google Scholar 

  42. G. N. Makarov, Khim. Vys. Energ. 38(1), 50 (2004) [High Energy Chem. 38 (1), 46 (2004)].

    Google Scholar 

  43. G. N. Makarov, Chem. Phys. 290, 137 (2003).

    Article  ADS  Google Scholar 

  44. J. A. Northby, J. Chem. Phys. 115, 10 065 (2001).

    Article  Google Scholar 

  45. O. F. Hagena and W. Obert, J. Chem. Phys. 56, 1793 (1972).

    Article  ADS  Google Scholar 

  46. O. F. Hagena, Z. Phys. D: At., Mol. Clusters 4, 291 (1987).

    Article  Google Scholar 

  47. J. Wormer, V. Guzielski, J. Stapelfeld, and T. Moller, Chem. Phys. Lett. 159, 321 (1989).

    Article  ADS  Google Scholar 

  48. J. P. Toennies, A. F. Vilesov, and K. B. Whaley, Phys. Today 54(2), 31 (2001).

    Article  Google Scholar 

  49. E. Lugovoj, J. P. Toennis, S. Grebenev, et al., in Atomic and Molecular Beams: The State of the Art 2000, Ed. by R. Compargue (Springer, Berlin, 2001), p. 755.

    Google Scholar 

  50. G. N. Makarov, Usp. Fiz. Nauk 174(3), 225 (2004) [Phys.—Usp. 47 (3), 217 (2004)].

    Article  Google Scholar 

  51. G. N. Makarov, Usp. Fiz. Nauk 176(11), 1155 (2006) [Phys.—Usp. 49 (11), 1131 (2006)].

    Article  Google Scholar 

  52. B. M. Smirnov, Usp. Fiz. Nauk 171(12), 1291 (2001) [Phys.—Usp. 44 (12), 1229 (2001)].

    Article  Google Scholar 

  53. R. Karnbach, M. Joppien, J. Stapelfeldt, et al., Rev. Sci. Instrum. 64, 2838 (1993).

    Article  ADS  Google Scholar 

  54. U. Buck and R. Krohne, J. Chem. Phys. 105, 5408 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Makarov.

Additional information

Original Russian Text © G.N. Makarov, A.N. Petin, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 5, pp. 851–861.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, G.N., Petin, A.N. Investigation of atomic and molecular clustering in a pulsed gas-dynamic jet with a pyroelectric detector. J. Exp. Theor. Phys. 107, 725–733 (2008). https://doi.org/10.1134/S1063776108110010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108110010

PACS numbers

Navigation