Skip to main content
Log in

Anomalous Hall effect in the phonon thermal conductivity of paramagnetic dielectrics

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory of the phonon Hall effect during heat transfer in a paramagnetic dielectric discovered by Strohm et al. [Phys. Rev. 95, 155901 (2005)] is developed. The heat flux emerging in the direction perpendicular to the magnetic field and to the temperature gradient is associated with the interaction of magnetic ions with the oscillating crystal field. In crystals with an arbitrary phonon spectrum, this interaction induces elliptic polarization of phonons. On the other hand, for any type of scattering, the temperature gradient forms part of the phonon density matrix, which is nondiagonal in modes. The combined action of these factors leads to the anomalous Hall effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Strohm, G. L. J. A. Rikken, and P. Wyder, Phys. Rev. Lett. 95, 155901 (2005).

    Google Scholar 

  2. A. V. Inyushkin and A. N. Taldenkov, Pis’ma Zh. Éksp. Teor. Fiz. 86(6), 436 (2007) [JETP Lett. 86 (6), 379 (2007)].

    Google Scholar 

  3. Yu. Kagan and L. A. Maksimov, Zh. Éksp. Teor. Fiz. 51(6), 1893 (1966) [Sov. Phys. JETP 24 (6), 1272 (1966)]; L. J. F. Hermans, P. H. Fortuin, H. F. P. Knaap, and J. J. M. Beenakker, Phys. Lett. A 25, 81 (1967); L. L. Gorelik, V. G. Nikolaevskiĭ, and V. V. Sinitsyn, Pis’ma Zh. Éksp. Teor. Fiz. 4 (11), 456 (1966) [JETP Lett. 4 (11), 307 (1966)].

    Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 10: E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Butterworth-Heinemann, Oxford, 1981).

    Google Scholar 

  5. G. A. Slack and D. W. Oliver, Phys. Rev. B: Solid State 4, 592 (1971).

    ADS  Google Scholar 

  6. I. K. Kikoin, Zh. Éksp. Teor. Fiz. 10, 1242 (1940).

    Google Scholar 

  7. Spin-Lattice Relaxation in Ionic Solids, Ed. by A. A. Manenkov and R. Orbach (Harper and Row, New York, 1966).

    Google Scholar 

  8. A. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970).

    Google Scholar 

  9. H. Capellmann and S. Lipinski, Z. Phys. B: Condens. Matter 83, 199 (1991).

    Article  ADS  Google Scholar 

  10. A. S. Ioselevich and H. Capellmann, Phys. Rev. B: Condens. Matter 51, 11446 (1995).

    Google Scholar 

  11. L. Sheng, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett. 96, 155901 (2006).

    Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Butterworth-Heinemann, Oxford, 1995).

    Google Scholar 

  13. R. J. Hardy, Phys. Rev. 132, 168 (1963).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. D. Zubarev, V. Morozov, and G. Ropke, Statistical Mechanics of Nonequilibrium Processes (Academie, Berlin, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Maksimov.

Additional information

Original Russian Text © Yu. Kagan, L.A. Maksimov, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 4, pp. 740–750.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, Y., Maksimov, L.A. Anomalous Hall effect in the phonon thermal conductivity of paramagnetic dielectrics. J. Exp. Theor. Phys. 107, 632–641 (2008). https://doi.org/10.1134/S1063776108100105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108100105

PACS numbers

Navigation