Skip to main content
Log in

Demagnetizing fields of crystallites and a method for measuring the thermodynamic fields of quasi-single-crystal and polycrystalline thin YBa2Cu3O7 − x disks

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The role of the demagnetizing fields of crystallites in HTSC samples is studied. An increase in the crystallite size is shown to suppress the intra-and intercrystalline critical currents of the sample in lower fields. The demagnetizing fields of crystallites are shown to be one of the main causes of the fact that the Bean model is invalid for HTSC samples. A method is proposed to measure the thermodynamic field of a superconductor; this method allows the first thermodynamic critical magnetic fields of the sample and its crystallites and “subcrystallites” to be measured with a high accuracy. The first thermodynamic critical magnetic fields are used to estimate the critical current density J c of the sample, crystallites, and subcrystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Physical Properties of High-Temperature Superconductors Ed. by D. M. Ginsberg (World Scientific, Singapore, 1990; Mir, Moscow, 1990).

    Google Scholar 

  2. V. V. Schmidt, The Physics of Superconductors: Introduction to Fundamentals and Applications (Springer, Berlin, 1997; MTsNMO, Moscow, 2000).

    MATH  Google Scholar 

  3. V. M. Pan, Fiz. Nizk. Temp. (Kharkov) 32(8), 1039 (2006) [Low Temp. Phys. 32 (8), 783 (2006)].

    Google Scholar 

  4. A. S. Mel’nikov, Yu. N. Nozdrin, I. D. Tokman, et al., Phys. Rev. B: Condens. Matter 58, 11672 (1998).

    Google Scholar 

  5. M. W. Rupich, U. Schoop, D. T. Verebelyi, et al., IEEE Trans. Appl. Supercond. 13, 2458 (2003).

    Article  Google Scholar 

  6. M. S. Hatzistergos, H. Efstathiadis, E. Lifshin, et al., IEEE Trans. Appl. Supercond. 13, 2470 (2003).

    Article  Google Scholar 

  7. A. A. Zhukov and V. V. Moshchalkov, Sverkhprovodimost: Fiz., Khim., Tekh. 4, 850 (1991).

    Google Scholar 

  8. Kh. R. Rostami, in Program and Abstracts of Papers of the 20th International Conference on Magnet Technology (MT 20), Philadelphia, PA, United States, August 27–31, 2000 (Philadelphia, 2000), No. 5105.

  9. Kh. R. Rostami, in Program and Abstracts of Papers of the 20th International Symposium on Superconductivity (ISS), Tsukuba, Japan, November 5–7, 2007 (Tsukuba, 2007), PCP-46, p. 77.

  10. E. B. Sonin, Pis’ma Zh. Éksp. Teor. Fiz. 47(8), 415 (1988) [JETP Lett. 47 (8), 496 (1988)].

    ADS  Google Scholar 

  11. V. R. Karasik, N. G. Vasil’ev, and V. G. Ershov, Zh. Éksp. Teor. Fiz. 59, 790 (1970) [Sov. Phys. JETP 32 433 (1970)].

    Google Scholar 

  12. V. V. Moshchalkov, A. A. Zhukov, L. I. Leonyuk, et al., Sverkhprovodimost: Fiz., Khim., Tekh. 2(12), 84 (1989).

    Google Scholar 

  13. V. S. Gorbachev and S. E. Savel’ev, Zh. Éksp. Teor. Fiz. 109(4), 1387 (1996) [JETP 82 (4), 748 (1996)].

    Google Scholar 

  14. V. M. Krasnov, V. A. Larkin, and V. V. Ryazanov, Physica C (Amsterdam) 174, 440 (1991).

    ADS  Google Scholar 

  15. Kh. R. Rostami, in Proceedings of the Conference on the Physics of Condensed Matter, Superconductivity, and Materials Science, Kurchatov Institute “Russian Research Center,” Moscow, Russia, November 26–30, 2007 (Moscow, 2007), p. 218.

  16. A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1992; Butterworth-Heinemann, Oxford, 1993).

    Google Scholar 

  18. P. de Genes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966; Mir, Moscow, 1968).

    Google Scholar 

  19. A. N. Artemov, Pis’ma Zh. Éksp. Teor. Fiz. 68(6), 460 (1998) [JETP Lett. 68 (6), 492 (1998)].

    Google Scholar 

  20. Kh. R. Rostami, Zh. Éksp. Teor. Fiz. 128(4), 760 (2005) [JETP 101 (4), 653 (2005)].

    Google Scholar 

  21. C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12, 14(1964).

    Article  ADS  Google Scholar 

  22. Kh. R. Rostami, Prib. Tekh. Éksp., No. 6, 95 (2004) [Instrum. Exp. Tech. 47 (6), 809 (2004)].

  23. V. N. Gubankov and Kh. R. Rostami, Fiz. Tverd. Tela (St. Petersburg) 43(7), 1168 (2001) [Phys. Solid State 43 (7), 1210 (2001)].

    Google Scholar 

  24. Cao Xiaowen, Han Guchang, and Zhang Tingyu, Mod. Phys. Lett. B 1, 383 (1988).

    Google Scholar 

  25. H. Dersch and G. Blatter, Phys. Rev. B: Condens. Matter 38, 11391 (1988).

    Google Scholar 

  26. A. V. Bezryadin, V. N. Kopylov, V. M. Krasnov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 51(3), 147 (1990) [JETP Lett. 51 (3), 167 (1990)].

    Google Scholar 

  27. Chemistry of High-Temperature Superconductors, Ed. by D. Nelson, M. Whittingham, and T. George (American Chemical Society, Washington, DC, United States, 1987; Mir, Moscow, 1988), Chap. 28.

    Google Scholar 

  28. Kh. R. Rostami, in Program and Abstracts of Papers of the 25th International Conference on Low-Temperature Physics (LT 25), Leiden, The Netherlands, August 6–13, 2008 (Leiden, 2008), B1LT1286.

  29. A. S. Krasil’nikov, L. G. Mamsurova, K. K. Pukhov, et al., Zh. Éksp. Teor. Fiz. 109(3), 1006 (1996) [JETP 82 (3), 542 (1996)].

    Google Scholar 

  30. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Article  ADS  Google Scholar 

  31. S. Senoussi, G. Aguillon, and S. Hadjoudj, Physica C (Amsterdam) 175, 215 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. R. Rostami.

Additional information

Original Russian Text © Kh.R. Rostami, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 4, pp. 716–745.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostami, K.R. Demagnetizing fields of crystallites and a method for measuring the thermodynamic fields of quasi-single-crystal and polycrystalline thin YBa2Cu3O7 − x disks. J. Exp. Theor. Phys. 107, 612–619 (2008). https://doi.org/10.1134/S1063776108100087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108100087

PACS numbers

Navigation