Advertisement

Journal of Experimental and Theoretical Physics

, Volume 107, Issue 4, pp 595–602 | Cite as

Exchange interactions and spin states in a V15 magnetic molecular nanocluster

  • V. V. Kostyuchenko
  • A. I. PopovEmail author
Order, Disorder, and Phase Transition in Condensed Systems

Abstract

Magnetization reversal in a V15 magnetic molecular cluster is studied theoretically and the results of calculations are compared with the available experimental data. Analytical and numerical methods (e.g., a modified Lanczos method) are used for calculating the energy spectrum of the cluster and for determining a set of exchange constants, which ensures good quantitative agreement between the results of theoretical calculations and experimental data on the behavior of magnetic susceptibility in the range of weak as well as strong fields. The fine structure of transitions from a low-to a high-spin state is predicted (in the range of ultrahigh fields, each of three transitions is a combination of two close transitions).

PACS numbers

75.50.Xx 75.25.+z 75.30.Et 75.45.+j 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunneling of the Magnetic Moment (Cambridge University Press, Cambridge, 1998).Google Scholar
  2. 2.
    F. M. Luis, F. L. Mettes, and L. J. de Jongh, in Magnetism: Molecules to Materials, Ed. by M. J. S. Miller, Vol. 3: Nanosized Magnetic Materials Magnetism: Molecules to Materials (Wiley, Weinheim, 2002), p. 169.Google Scholar
  3. 3.
    I. Tupitsyn and B. Barbara, in Magnetism: Molecules to Materials, Ed. by M. J. S. Miller, Vol. 3: Nanosized Magnetic Materials Magnetism: Molecules to Materials (Wiley, Weinheim, 2002), p. 109.Google Scholar
  4. 4.
    I. Chiorescu, W. Wernsdorfer, A. Müller, et al., Phys. Rev. Lett. 84, 3454 (2000).CrossRefADSGoogle Scholar
  5. 5.
    B. Barbara, A. Müller, H. Bogge, et al., J. Magn. Magn. Mater. 221, 103 (2000).CrossRefADSGoogle Scholar
  6. 6.
    D. Gatteschi, L. Pardi, A. L. Barra, et al., Nature (London) 354, 463 (1991).CrossRefADSGoogle Scholar
  7. 7.
    A. L. Barra, D. Gatteschi, L. Pardi, et al., J. Am. Chem. Soc. 114, 8509 (1992).CrossRefGoogle Scholar
  8. 8.
    I. Chiorescu, W. Wernsdorfer, A. Müller, et al., Phys. Rev. B: Condens. Matter 67, 020402 (2002).Google Scholar
  9. 9.
    B. Barbara, I. Chiorescu, W. Wernsdorfer, et al., Prog. Theor. Phys. Suppl. 145, 357 (2002).CrossRefADSGoogle Scholar
  10. 10.
    B. Barbara, J. Mol. Struct. 656, 135 (2003).CrossRefADSGoogle Scholar
  11. 11.
    H. Nojiri, T. Taniguchi, Y. Ajiro, et al., Physica B (Amsterdam) 346–347, 216 (2004).Google Scholar
  12. 12.
    A. Mischenko, A. Zvezdin, and B. Barbara, J. Magn. Magn. Mater. 258–259, 352 (2003).CrossRefGoogle Scholar
  13. 13.
    H. Yoneda, T. Goto, Y. Fujii, et al., Physica B (Amsterdam) 329, 1176 (2003).ADSGoogle Scholar
  14. 14.
    D. Procissi, B. Suh, J. Jung, et al., J. Appl. Phys. 93, 7810 (2003).CrossRefADSGoogle Scholar
  15. 15.
    D. Procissi, A. Lascialfari, E. Micotti, et al., Phys. Rev. B: Condens. Matter 73, 184417 (2006).Google Scholar
  16. 16.
    Y. Furukawa, Y. Fujiyoshi, K. Kumagai, and P. Kögerler, Polyhedron 24, 2737 (2005).CrossRefGoogle Scholar
  17. 17.
    K. Kumagai, Y. Fujiyoshi, Y. Furukawaa, and P. Kögerler, J. Magn. Magn. Mater. 294, 141 (2005).CrossRefADSGoogle Scholar
  18. 18.
    Y. Furukawaa, Y. Nishisaka, K. Kumagai, and P. Kögerler, J. Magn. Magn. Mater. 310, 1429 (2007).CrossRefADSGoogle Scholar
  19. 19.
    T. Sakon, K. Koyama, M. Motokawa, et al., Physica B (Amsterdam) 346–347, 206 (2004).Google Scholar
  20. 20.
    G. Chaboussant, R. Basler, A. Sieber, et al., Europhys. Lett. 59, 291 (2002).CrossRefADSGoogle Scholar
  21. 21.
    G. Chaboussant, S. Ochsenbein, A. Sieber, et al., Europhys. Lett. 66, 423 (2004).CrossRefADSGoogle Scholar
  22. 22.
    D. W. Boukhvalov, E. Z. Kurmaev, A. Moewes, et al., Phys. Rev. B: Condens. Matter 67, 134408 (2003).Google Scholar
  23. 23.
    J. Choi, L. A. W. Sanderson, J. L. Musfeldt, et al., Phys. Rev. B: Condens. Matter 68, 64412 (2003).Google Scholar
  24. 24.
    W. Wernsdorfer, A. Müller, D. Mailly, and B. Barbara, Europhys. Lett. 66, 861 (2004).CrossRefADSGoogle Scholar
  25. 25.
    V. V. Platonov, O. M. Tatsenko, V. I. Plis, et al., Fiz. Tverd. Tela (St. Petersburg) 44(11), 2010 (2002) [Phys. Solid State 44 (11), 2104 (2002)].Google Scholar
  26. 26.
    A. K. Zvezdin, V. V. Kostyuchenko, V. V. Platonov, et al., Usp. Fiz. Nauk 172(11), 1303 (2002) [Phys.—Usp. 45 (11), 1183 (2002)].CrossRefGoogle Scholar
  27. 27.
    B. Barbara, V. V. Kostyuchenko, A. S. Mischenko, and A. K. Zvezdin, Phys. Status Solidi C 1, 1595 (2004).CrossRefADSGoogle Scholar
  28. 28.
    A. K. Zvezdin, V. I. Plis, A. I. Popov, and B. Barbara, Fiz. Tverd. Tela (St. Petersburg) 43(1), 177 (2001) [Phys. Solid State 43 (1), 185 (2001)].Google Scholar
  29. 29.
    I. Rudra, S. Ramasesha, and D. Sen, J. Phys.: Condens. Mater. 13, 11717 (2001).Google Scholar
  30. 30.
    C. Raghu, I. Rudra, D. Sen, and S. Ramasesha, Phys. Rev. B: Condens. Matter 64, 64419 (2001).Google Scholar
  31. 31.
    N. Konstantinidis and D. Coffey, Phys. Rev. B: Condens. Matter 66, 174426 (2002).Google Scholar
  32. 32.
    H. D. Raedt, S. Miyashita, K. Michielsen, and M. Machida, Phys. Rev. B: Condens. Matter 70, 064401 (2004).Google Scholar
  33. 33.
    H. D. Raedt, S. Miyashita, and K. Michielsen, Phys. Status Solidi B 241, 1180 (2004).CrossRefADSGoogle Scholar
  34. 34.
    B. Tsukerblat, A. Tarantul, and A. Müller, Phys. Lett. A 353, 48 (2006).CrossRefADSGoogle Scholar
  35. 35.
    A. Tarantul, B. Tsukerblat, and A. Müller, Chem. Phys. Lett. 428, 361 (2006).CrossRefADSGoogle Scholar
  36. 36.
    J. Kortus, C. Hellberg, and M. R. Pederson, Phys. Rev. Lett. 34, 3400 (2001).CrossRefADSGoogle Scholar
  37. 37.
    D. Boukhvalov, V. Dobrovitski, M. Katsnelson, et al., Phys. Rev. B: Condens. Matter 70, 054417 (2004).Google Scholar
  38. 38.
    A. I. Popov, V. I. Plis, A. F. Popkov, and A. K. Zvezdin, Phys. Rev. B: Condens. Matter 69, 104418 (2004).Google Scholar
  39. 39.
    A. F. Popkov, N. E. Kulagin, A. I. Mukhanova, et al., Phys. Rev. B: Condens. Matter 72, 104410 (2005).Google Scholar
  40. 40.
    V. V. Kostyuchenko and A. K. Zvezdin, Fiz. Tverd. Tela (St. Petersburg) 45(5), 861 (2003) [Phys. Solid State 45 (5), 903 (2003)].Google Scholar
  41. 41.
    J. Schnack, M. Brüger, M. Luban, et al., Phys. Rev. B: Condens. Matter 73, 94401 (2006).Google Scholar
  42. 42.
    V. Kostyuchenko, Phys. Rev. B: Condens. Matter 76, 212404 (2007).Google Scholar
  43. 43.
    O. Waldmann, R. Bircher, G. Carver, et al., Phys. Rev. B: Condens. Matter 75, 174438 (2007).Google Scholar
  44. 44.
    V. V. Kostyuchenko, I. M. Markevtsev, A. V. Philippov, et al., Phys. Rev. B: Condens. Matter 67, 184412 (2003).Google Scholar
  45. 45.
    D. Gattecshi, L. Pardi, A. L. Barra, and A. Müller, Mol. Eng. 3, 157 (1993).CrossRefGoogle Scholar
  46. 46.
    E. R. Gagliano, E. Dagotto, A. Moreo, and F. C. Alcaraz, Phys. Rev. B: Condens. Matter 34, 1677 (1986).ADSGoogle Scholar
  47. 47.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).CrossRefADSGoogle Scholar
  48. 48.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Yaroslavl Division, Institute of Physics and TechnologyRussian Academy of SciencesYaroslavlRussia
  2. 2.Moscow State Institute of Electronic EngineeringMoscowRussia

Personalised recommendations