Skip to main content
Log in

Analysis of nonlinearity of magnetization of YBa2Cu3O7 − x by the magnetic field modulation method

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Temperature dependences of the magnetization harmonics of YBa2Cu3O7 − x monodomain samples are studied experimentally at temperatures of 77–120 K. It is found that nonlinearity of magnetization of YBa2Cu3O7 − x (higher harmonics generation) is observed up to temperatures T = 103–112 K, which are much higher than the superconducting transition temperature of this compound. At the same temperatures, the temperature dependence of resistivity begins to deviate from linearity. The observed singularity of the magnetization of YBa2Cu3O7 − x is associated with the emergence of a pseudogap state in this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Belyavskii and Yu. V. Kopaev, Usp. Fiz. Nauk 174(4), 457 (2004) [Phys.-Usp. 47 (4), 409 (2004)].

    Google Scholar 

  2. S. Chakravarty, Hae-Young Kee, and K. Völker, Nature (London) 428, 53 (2004).

    Article  ADS  Google Scholar 

  3. M. R. Trunin, Usp. Fiz. Nauk 175(10), 1017 (2005) [Phys.-Usp. 48 (10), 979 (2005)].

    Article  Google Scholar 

  4. H.-H. Wen, L. Shan, X.-G. Wen, et al., Phys. Rev. B: Condens. Matter 72, 134507 (2005).

    Google Scholar 

  5. D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 (2005).

    Article  ADS  Google Scholar 

  6. M. Mayr, G. Alvarez, A. Moreo, and E. Dagotto, Phys. Rev. B: Condens. Matter 73, 014509 (2006).

    Google Scholar 

  7. Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B: Condens. Matter 73, 024510 (2006).

    Google Scholar 

  8. P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).

    Article  ADS  Google Scholar 

  9. Ø. Fischer, M. Kugler, I. Maggio-Aprile, and C. Berthod, Rev. Mod. Phys. 79, 353 (2007).

    Article  ADS  Google Scholar 

  10. M. V. Sadovskii, Usp. Fiz. Nauk 171(5), 539 (2001) [Phys.—Usp. 44 (5), 515 (2001)].

    Article  Google Scholar 

  11. C. C. Homes, T. Timusk, R. Liang, et al., Phys. Rev. Lett. 71, 1645 (1993).

    Article  ADS  Google Scholar 

  12. J. Rossat-Mignod, L. P. Regnault, P. Bourges, et al., Physica B (Amsterdam) 186–188, 1 (1993).

    Google Scholar 

  13. W. W. Warren, R. E. Walstedt, G. F. Brennert, et al., Phys. Rev. Lett. 62, 1193 (1989).

    Article  ADS  Google Scholar 

  14. A. I. Golovashkin, O. M. Ivanenko, K. V. Mitsen, and N. E. Khramenkov, Preprint No. 298 FIAN (P. N. Lebedev Physics Institute, Russian Academy of Science, Moscow, 1987).

  15. T. Ito, K. Takenaka, and S. Uchida, Phys. Rev. Lett. 70, 3995 (1993).

    Article  ADS  Google Scholar 

  16. D. D. Prokof’ev, M. P. Volkov, and Yu. A. Boĭkov, Fiz. Tverd. Tela (St. Petersburg) 45(7), 1168 (2003) [Phys. Solid State 45 (7), 1223 (2003)].

    Google Scholar 

  17. N. D. Kuz’michev, V. V. Slavkin, and A. I. Golovashkin, Nauchn. Ses. MIFI-2006, Sb. Nauchn. Tr. 4, 124 (2006).

    Google Scholar 

  18. A. I. Golovashkin, N. D. Kuz’michev, and V. V. Slavkin, Kratk. Soobshch. Fiz. FIAN, No. 9, 19 (2006).

  19. N. D. Kuz’michev and V. V. Slavkin, Fiz. Tverd. Tela (St. Petersburg) 49(9), 1549 (2007) [Phys. Solid State 49 (9), 1623 (2007)].

    Google Scholar 

  20. M. A. Vasyutin, N. D. Kuz’michev, V. V. Slavkin, et al., Prikl. Fiz., No. 2, 51 (1995).

  21. A. I. Golovashkin, N. D. Kuz’michev, I. S. Levchenko, et al., Fiz. Tverd. Tela (St. Petersburg) 31(4), 233 (1989) [Sov. Phys. Solid State 31 (4), 679 (1989)].

    Google Scholar 

  22. A. I. Golovashkin, N. D. Kuz’michev, I. S. Levchenko, et al., Fiz. Tverd. Tela (Leningrad) 32(5), 1374 (1990) [Sov. Phys. Solid State 32 (5), 802 (1990)].

    Google Scholar 

  23. N. D. Kuz’michev, Zh. Tekh. Fiz. 64(12), 63 (1994) [Tech. Phys. 39 (12), 1236 (1994)].

    Google Scholar 

  24. M. Takigawa, A. P. Ryes, P. C. Hammel, et al., Phys. Rev. B: Condens. Matter 43, 247 (1991).

    ADS  Google Scholar 

  25. A. V. Mitin, G. M. Kuz’micheva, V. V. Murashov, and E. P. Khlybov, Zh. Éksp. Teor. Phys. 107(6), 1943 (1995) [JETP 80 (6), 1075 (1995)].

    Google Scholar 

  26. C. Panagopoulos, M. Majoros, T. Nishizaki, and H. Iwasaki, Phys. Rev. Lett. 96, 047002 (2006).

    Google Scholar 

  27. C. Panagopoulos, M. Majoros, and A. P. Petrović, Phys. Rev. B: Condens. Matter 69, 144508 (2004).

    Google Scholar 

  28. M. Majoros, C. Panagopoulos, T. Nishizaki, and H. Iwasaki, Phys. Rev. B: Condens. Matter 72, 024528 (2005).

    Google Scholar 

  29. Y. Wang, L. Li, M. J. Naughton, et al., Phys. Rev. Lett. 95, 247002 (2005).

  30. S. A. Kivelson, I. P. Bindloss, E. Fradkin, et al., Rev. Mod. Phys. 75, 1201 (2003).

    Article  ADS  Google Scholar 

  31. M. V. Sadovskii, Usp. Fiz. Nauk 171(5), 539 (2001) [Phys.—Usp. 44 (5), 515 (2001)].

    Article  Google Scholar 

  32. M. R. Norman and C. Pépin, Rep. Prog. Phys. 66, 1547 (2003).

    Article  ADS  Google Scholar 

  33. V. M. Krasnov, A. E. Kovalev, A. Yurgens, and D. Winkler, Phys. Rev. Lett. 86, 2657 (2001).

    Article  ADS  Google Scholar 

  34. N. V. Anshukova, A. I. Golovashkin, L. I. Ivanova, and A. P. Rusakov, Zh. Éksp. Teor. Phys. 123(6), 1188 (2003) [JETP 96 (6), 1045 (2003)].

    Google Scholar 

  35. Z. A. Xu, N. P. Ong, Y. Wang, et al., Nature (London) 406, 486 (2000).

    Article  ADS  Google Scholar 

  36. Y. Wang, S. Ono, Y. Onose, et al., Science (Washington) 299, 86 (2003).

    Article  ADS  Google Scholar 

  37. V. I. Belyavskii and Yu. V. Kopaev, Usp. Fiz. Nauk 176(4), 457 (2006) [Phys.—Usp. 47 (4), 409 (2006)].

    Article  Google Scholar 

  38. V. I. Belyavsky, Yu. V. Kopaev, and M. Yu. Smirnov, Zh. Éksp. Teor. Phys. 128(3), 525 (2005) [JETP 101 (3), 452 (2005)].

    Google Scholar 

  39. P. Pieri, G. C. Strinati, and D. Moroni, Phys. Rev. Lett. 89, 127003 (2002).

    Google Scholar 

  40. A. I. Golovashkin, A. M. Tskhovrebov, N. D. Kuz’michev, and V. V. Slavkin, in Proceedings of the International Conference “Fundamental Problems of High-Temperature Superconductivity,” (Zvenigorod, Moscow Region, 2006), p. 170.

    Google Scholar 

  41. A. I. Golovashkin, V. A. Danilov, O. M. Ivanenko, et al., Preprint FIAN, No. 305 (P. N. Lebedev Physics Institute Russian Academy of Science, Moscow, 1987).

  42. A. I. Golovashkin, O. M. Ivanenko, K. V. Mitsen, et al., in Problems of High-Temperature Superconductivity (Ural. Branch Acad. Sci. USSR, Inst. Phys. Metals, Sverdlovsk, 1987), Part. II, p. 180 [in Russian].

    Google Scholar 

  43. N. V. Anshukova, A. I. Golovashkin, O. M. Ivanenko, et al., in Problems of High-Temperature Superconductivity (Ural. Branch Acad. Sci. USSR, Inst. Phys. Metals, Sverdlovsk, 1987), Part. II, p. 182 [in Russian].

    Google Scholar 

  44. N. V. Anshukova, G. L. Vorob’ev, A. I. Golovashkin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 46(9), 373 (1987) [JETP Lett. 46 (9), 471 (1987)].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Golovashkin.

Additional information

Original Russian Text © A.I. Golovashkin, N.D. Kuz’michev, V.V. Slavkin, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 4, pp. 679–686.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovashkin, A.I., Kuz’michev, N.D. & Slavkin, V.V. Analysis of nonlinearity of magnetization of YBa2Cu3O7 − x by the magnetic field modulation method. J. Exp. Theor. Phys. 107, 581–586 (2008). https://doi.org/10.1134/S106377610810004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377610810004X

PACS numbers

Navigation