Skip to main content
Log in

Ward-Takahashi identities in the description of electroweak transitions of nucleons and pions

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

For nucleons and pions, the relations between the propagators and vertex functions that describe the vector electroweak transitions have been derived directly as a natural consequence of the symmetries of the strong and electroweak interactions of hadrons. Significantly, the system under study includes various strongly interacting hadrons. The electromagnetic corrections to the vertex functions and propagators of the hadrons are taken into account to within e 2. The results obtained are discussed in connection with the calculation of radiative corrections in the description of electroweak transitions of nucleons and pions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the Standard Model (Cambridge University Press, Cambridge, United Kingdom, 1994).

    Google Scholar 

  2. D. Bardin and G. Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions (Oxford University Press, Oxford, 1999).

    Google Scholar 

  3. Proceedings of the Two-Day-Workshop “Quark-Mixing, CKM-Unitarity,” Heidelberg, Germany, 2002 (Heidelberg, 2002); J. Res. Natl. Inst. Stand. Technol. 110 (3–4) (2005); J. C. Hardy, arXiv:hep-ph/0703165v1; V. Gudkov, J. Neutron Res. 13, 39 (2005).

  4. A. Serebrov, V. Varlamov, A. Kharitonov, et al., Preprint No. 2564 PIYaF (St. Petersburg Nuclear Physics Institute, Gatchina, Russia, 2004); Phys. Lett. B 605, 72 (2005).

  5. D. Počanić, E. Ferlez, V. Baranov, et al., Phys. Rev. Lett. 93, 181803 (2004).

  6. J. Byrne, P. G. Dawber, M. G. D. van der Grinten, et al., J. Phys. G: Nucl. Part. Phys. 28, 1325 (2002).

    Article  ADS  Google Scholar 

  7. D. R. Jenni, S. C. Frautschi, and Suura, Ann. Phys. (San Diego, CA) 13, 379 (1961).

    ADS  Google Scholar 

  8. K. I. Aoki, Z. Hioki, R. Kawabe, et al., Suppl. Prog. Theor. Phys., No. 73, 1 (1982).

  9. M. Böhm, W. Hollik, and H. Spiesberger, Fortschr. Phys. 34, 687 (1986); W. Hollik, Fortschr. Phys. 38, 165 (1990).

    Google Scholar 

  10. Y. Yokoo, S. Suzuki, and M. Morita, Prog. Theor. Phys. 50, 1894 (1973); Suppl. Prog. Theor. Phys., No. 60, 37 (1976).

    Article  ADS  Google Scholar 

  11. G. G. Bunatian, Yad. Fiz. 62, 697 (1999); [Phys. At. Nucl. 62 (4), 648 (1999)].

    Google Scholar 

  12. G. G. Bunatian, J. Res. Nat. Inst. Stand. Technol. 110, 319 (2005); arXiv:hep-ph/0311350.

    Google Scholar 

  13. J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

    Article  ADS  Google Scholar 

  14. E. S. Abers, R. E. Norton, and D. A. Dicus, Phys. Rev. Lett. 18, 676 (1967).

    Article  ADS  Google Scholar 

  15. E. S. Abers, D. A. Dicus, R. E. Norton, and H. E. Quinn, Phys. Rev. 167, 1461 (1968).

    Article  ADS  Google Scholar 

  16. A. Sirlin, Rev. Mod. Phys. 50, 573 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Garcia, J. L. Garcia-Luna, and G. Lopez, Phys. Lett. B 500, 66 (2001); W. Jaus, Phys. Rev. D: Part. Fields 63, 053009 (2001); I. S. Towner and J. C. Hardy, J. Phys. G: Nucl. Part. Phys. 29, 197 (2003); D. H. Wilkinson, J. Phys. G: Nucl. Part. Phys. 29, 189 (2003); S. Ando, H. W. Fearing, V. Gudkov, et al., arXiv:nucl-th/0402100v1; J. C. Hardy and I. S. Towner, Phys. Rev. C: Nucl. Phys. 71, 055501 (2005); W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006); G. L. Garcia-Luna and A. Garcia, J. Phys. G: Nucl. Part. Phys. 32, 333 (2006).

    Article  ADS  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 4: V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1968–1971; Butterworth-Heinemann, Oxford, 1971).

    Google Scholar 

  19. S. L. Adler and R. F. Dashen, Current Algebras and Applications to Particle Physics (Benjamin, New York, 1968).

    MATH  Google Scholar 

  20. V. de Alfaro, S. Fubini, G. Furlan, and G. Rosseti, Currents in Hadron Physics (Elsevier, New York, 1973).

    Google Scholar 

  21. N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Field (Gostekhizdat, Moscow, 1957; Wiley, New York, 1959); S. S. Schweber, An Introduction to the Relativistic Quantum Field Theory (Row, Peterson and Co., Elmsford, NY, United States, 1961); P. T. Matthews, Phys. Rev. 76, 684L (1949); A. Kanazava and S. Tani, Prog. Theor. Phys. 25, 519 (1961).

    Google Scholar 

  22. E. D. Commins and P. H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  23. J. Gasser, Nucl. Phys. B 279, 65 (1987); A. Pich, Int. J. Mod. Phys. A 20, 1613 (2005); V. Bernard and U.-G. Meisner, Annu. Rev. Nucl. Part. Sci. 57, 33 (2006).

    Article  ADS  Google Scholar 

  24. P. Chang and F. Gursey, Phys. Rev. 164, 1752 (1967); H. Leman and H. Trute, Nucl. Phys. B 52, 280 (1973); M. K. Volkov and V. N. Pervushin, Substantially Nonlinear Quantum Theories, Dynamical Symmetries, and Meson Physics (Atomizdat, Moscow, 1978) [in Russian]; S. Gasiorowicz and D. A. Geffen, Rev. Mod. Phys. 41, 531 (1969).

    Article  ADS  Google Scholar 

  25. S. L. Adler, Phys. Rev. [Sect.] B 139, 1638 (1965).

    ADS  Google Scholar 

  26. Y. Takahashi, Nuovo Cimento 6, 371 (1957).

    Article  MATH  Google Scholar 

  27. V. Bernard, N. Kaiser, and U.-G. Meisner, Int. J. Mod. Phys. E 4, 193 (1995); S. Scheres, Adv. Nucl. Phys. 27, 201 (2003); M. Knecht, H. Neufeld, H. Rupertsberger, et al., Eur. Phys. J. C 12, 469 (2000).

    Article  ADS  Google Scholar 

  28. H. Georgi, Annu. Rev. Nucl. Sci. 43, 209 (1995); S. Ando, H. Fearing, V. Gudkov, et al., Phys. Lett. B 1, 1000 (2004); S. Gardner, V. Bernard, U.-G. Mei ner, et al., J. Res. Natl. Inst. Stand. Technol. 110, 411 (2005); V. Cirigliano, M. Knecht, H. Neufeld, et al., Eur. Phys. J. C 27, 255 (2003); T. Fuchs, J. Gegelia, S. Scherer, et al., J. Phys. G: Nucl. Part. Phys. 30, 1407 (2004).

    ADS  Google Scholar 

  29. A. Sirlin, Phys. Rev. 164, 1767 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Bunatian.

Additional information

Original Russian Text © G.G. Bunatian, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 4, pp. 660–678.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunatian, G.G. Ward-Takahashi identities in the description of electroweak transitions of nucleons and pions. J. Exp. Theor. Phys. 107, 564–580 (2008). https://doi.org/10.1134/S1063776108100038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108100038

PACS numbers

Navigation