Skip to main content
Log in

BKT phase in systems of spinless strongly interacting one-dimensional fermions

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We present the ground-state wavefunctions for a system of spinless one-dimensional fermions in the limit of an infinitely strong interaction, and we demonstrate explicitly that the system symmetry is lower than the original symmetry of the Hamiltonian. As a result, the system in this limit undergoes a second-order phase transition into a phase with finite density of chiral pairs. The phase transforms continuously into a Berezinskii-Kosterlitz-Thouless (BKT) phase if the interaction in the model decreases. Therefore, just the BKT phase is realized in nature. The temperature of the smearing phase transition is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Bockrath, D. H. Cobden, J. Lu, et al., Nature (London) 397, 598 (1999).

    Article  ADS  Google Scholar 

  5. O. M. Anslander, A. Yacoby, R. Picciotto, et al., Phys. Rev. Lett. 84, 1764 (2000).

    Article  ADS  Google Scholar 

  6. Jhinhwan Lee, S. Eggert, H. Kim, et al., Phys. Rev. Lett. 93, 166403 (2004).

  7. P. Debray, V. L. Gurevich, R. Klesse, and R. S. Newrock, arXiv:cond-mat/0207408.

  8. G. D. Machan, Many Particle Physics, (Plenum, New York, 1993).

    Google Scholar 

  9. V. J. Emery, in Highly Conducting One-Dimensional Solids, Ed. by J. T. Devreese, R. P. Evrurd, and V. E. van Doren (Plenum, New York, 1979), p. 327.

    Google Scholar 

  10. H. J. Schulz, arXiv:cond-mat/9503150.

  11. J. Voit, Rep. Prog. Phys. 58, 977 (1995).

    Article  ADS  Google Scholar 

  12. H. J. Schulz, Phys. Rev. Lett. 71, 1864 (1993).

    Article  ADS  Google Scholar 

  13. K. B. Efetov and A. I. Larkin, Zh. Éksp. Teor. Fiz. 69(2), 764 (1975) [Sov. Phys. JETP 42 (2), 390 (1975)].

    Google Scholar 

  14. W. Metzner and C. Di Castro, Phys. Rev. B: Condens. Matter 47, 16107 (1993).

    Google Scholar 

  15. V. L. Berezinskiĭ, Zh. Éksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493 (1970)]; Zh. Éksp. Teor. Fiz. 61, 1144 (1971) [Sov. Phys. JETP 34, 610 (1971)].

    Google Scholar 

  16. J. M. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046 (1974).

    Article  ADS  Google Scholar 

  17. J. Goldstone, Nuovo Cimento 19, 154 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. J. Schwinger, Phys. Rev. 128, 2425 (1962); A. Casher, J. Kogut, and L. Suskind, Phys. Rev. D: Part. Fields 10, 732 (1974).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. G. S. Danilov, I. T. Dyatlov, and V. Yu. Petrov, Zh. Éksp. Teor. Fiz. 78(4), 1314 (1980) [Sov. Phys. JETP 51 (4), 663 (1980)].

    MathSciNet  Google Scholar 

  21. I. T. Dzyaloshinsky and A. I. Larkin, Zh. Éksp. Teor. Fiz. 65(1), 427 (1973) [Sov. Phys. JETP 37 (1), 209 (1973)].

    Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Butterworth-Heinemann, Oxford, 2000; Nauka, Moscow, 2003).

    Google Scholar 

  23. F. D. M. Haldane, J. Phys. C: Solid State Phys. 14, 2585 (1981).

    Article  ADS  Google Scholar 

  24. A. M. Tsvelik, Quantum Field Theory in Condensed Matter (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  25. A. Casher, J. Kogut, and L. Susskind, Phys. Rev. Lett. 31, 792 (1973).

    Article  ADS  Google Scholar 

  26. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Butterworth-Heinemann, Oxford, 2000; Nauka, Moscow, 2005).

    Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9: E. M. Lifshitz and L. P. Pitaevskii Statistical Physics: Part 2 (Butterworth-Heinemann, Oxford, 2002; Nauka, Moscow, 2005), Sect. 35.

    Google Scholar 

  29. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).

    Article  ADS  Google Scholar 

  30. A. A. Slavnov and L. D. Faddeev, Gauge Fields: Introduction to Quantum Theory, (Nauka, Moscow, 1978; Benjamin-Cummings, Reading, MA, United States, 1980).

    Google Scholar 

  31. G. E. Uhlenbek, G. W. Ford, and E. W. Montroll, Lectures in Statistical Mechanics (Am. Math. Soc., Providence, RI, United States, 1963).

    Google Scholar 

  32. G. S. Danilov, I. T. Dyatlov, and V. Yu. Petrov, Zh. Éksp. Teor. Fiz. 79(6), 2017 (1980) [Sov. Phys. JETP 52 (6), 1019 (1980)].

    Google Scholar 

  33. V. V. Afonin, V. L. Gurevich, and V. Yu. Petrov, arXiv:cond-mat/0610791.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Afonin.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afonin, V.V., Petrov, V.Y. BKT phase in systems of spinless strongly interacting one-dimensional fermions. J. Exp. Theor. Phys. 107, 542–563 (2008). https://doi.org/10.1134/S1063776108100026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108100026

PACS numbers

Navigation