Skip to main content
Log in

Soliton generation via continuous stokes acoustic self-scattering of hypersonic waves in a paramagnetic crystal

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic “bullets” or vortices localized in all directions is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  2. V. A. Krasil’nikov and V. V. Krylov, Introduction to Physical Acoustics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  3. G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, United States, 1989; Mir, Moscow, 1996).

    Google Scholar 

  4. S. V. Sazonov and A. F. Sobolevskiĭ, Kvantovaya Élektron. (Moscow) 35, 1019 (2005).

    Article  Google Scholar 

  5. A. G. Stepanov, A. A. Mel’nikov, V. O. Kompanets, and S. V. Chekalin, Pis’ma Zh. Éksp. Teor. Fiz. 85(5), 279 (2007) [JETP Lett. 85 (5), 227 (2007)].

    Google Scholar 

  6. U. Kh. Kopvillem, V. V. Samartsev, and N. K. Solovarov, Adv. Mol. Relax. Processes 8, 241 (1976).

    Article  Google Scholar 

  7. V. A. Golenishchev-Kutuzov, V. V. Samartsev, N. K. Solovarov, and B. M. Khabibulin, Magnetic Quantum Acoustics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  8. A. V. Gulakov and S. V. Sazonov, J. Phys.: Condens. Matter 16, 1733 (2004).

    Article  ADS  Google Scholar 

  9. S. V. Sazonov and N. V. Ustinov, Zh. Éksp. Teor. Fiz. 127(2), 289 (2005) [JETP 100 (2), 256 (2005)].

    Google Scholar 

  10. A. A. Zabolotskii, Zh. Éksp. Teor. Fiz. 123(3), 560 (2003) [JETP 96 (3), 496 (2003)].

    Google Scholar 

  11. S. V. Sazonov, Zh. Éksp. Teor. Fiz. 118(1), 20 (2000) [JETP 91 (1), 16 (2000)].

    Google Scholar 

  12. A. A. Zabolotskii, Zh. Éksp. Teor. Fiz. 123(6), 1239 (2003) [JETP 96 (6), 1089 (2003)].

    MathSciNet  Google Scholar 

  13. A. A. Zabolotskii, Physica D (Amsterdam) 185, 117 (2003).

    MATH  ADS  MathSciNet  Google Scholar 

  14. A. A. Zabolotskii, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 066606 (2003).

  15. S. V. Sazonov and N. V. Ustinov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 056614-1 (2006).

  16. J. Tucker and V. Rampton, Microwave Ultrasonics in Solid State Physics (North-Holland, Amsterdam, 1971; Mir, Moscow, 1975).

    Google Scholar 

  17. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953; Fizmatlit, Moscow, 1963).

    MATH  Google Scholar 

  18. N. S. Shiren, Phys. Rev. B: Solid State 2, 2471 (1970).

    ADS  Google Scholar 

  19. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, London, 1982; Mir, Moscow, 1988).

    MATH  Google Scholar 

  20. S. V. Sazonov, J. Phys.: Condens. Matter 6, 6295 (1994).

    Article  ADS  Google Scholar 

  21. M. Pomerantz, Phys. Rev. A: At., Mol., Opt. Phys. 139, 501 (1965).

    ADS  Google Scholar 

  22. É. M. Belenov, A. V. Nazarkin, and V. A. Ushchapovskiĭ, Zh. Éksp. Teor. Fiz. 100(3), 762 (1991) [Sov. Phys. JETP 73 (3), 422 (1991)].

    ADS  Google Scholar 

  23. A. N. Bugaĭ and S. V. Sazonov, Fiz. Tverd. Tela (St. Petersburg) 47(10), 1839 (2005) [Phys. Solid State 47 (10), 1914 (2005)].

    Google Scholar 

  24. N. S. Buinov, V. R. Nagibarov, and N. K. Solovarov, Ukr. Fiz. Zh. 22, 151 (1977).

    Google Scholar 

  25. N. Yajima and M. Oikawa, Prog. Theor. Phys. 56, 1719 (1976).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. V. E. Zakharov, Zh. Éksp. Teor. Fiz. 62, 1745 (1972) [Sov. Phys. JETP 35, 908 (1972)].

    Google Scholar 

  27. E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 41(6), 242 (1985) [JETP Lett. 41 (6), 294 (1985)].

    Google Scholar 

  28. F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).

    Article  ADS  Google Scholar 

  29. V. N. Serkin, T. L. Belyaeva, G. H. Corro, and M. Agüero Granados, Kvantovaya Électron. (Moscow) 33, 325 (2003).

    Article  Google Scholar 

  30. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Cooperative Effects in Optics (Nauka, Moscow, 1988; Institute of Physics, Bristol, 1993).

    Google Scholar 

  31. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1967; Nauka, Moscow, 1970).

    Google Scholar 

  32. A. N. Bugay and S. V. Sazonov, Phys. Rev. E: Stat., Nonlinear., Soft Matter Phys. 74, 066608-1 (2006).

  33. S. K. Zhdanov, Pis’ma Zh. Éksp. Teor. Fiz. 43(9), 414 (1986) [JETP Lett. 43 (9), 532 (1986)].

    Google Scholar 

  34. S. K. Zhdanov and B. A. Trubnikov, Zh. Éksp. Teor. Fiz. 92(5), 1612 (1987) [Sov. Phys. JETP 65 (5), 904 (1987)].

    ADS  Google Scholar 

  35. S. V. Sazonov, Zh. Éksp. Teor. Fiz. 130(1), 145 (2006) [JETP 103 (1), 126 (2006)].

    Google Scholar 

  36. A. S. Desyatnikov, L. Torner, and Yu. S. Kivshar, in Progress in Optics, Ed. by E. Wolf (Elsevier, Amsterdam, 2005), Vol. 47, Chap. X.

    Google Scholar 

  37. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003; Fizmatlit, Moscow, 2005).

    Google Scholar 

  38. I. Towers, A. V. Buryak, R. A. Sammut, et al., Phys. Lett. A 288, 292 (2001).

    Article  MATH  ADS  Google Scholar 

  39. H. Michinel, J. Campo-Taboas, R. Garcia-Fernandez, et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 066604-7 (2002).

    Google Scholar 

  40. M. R. Matthews, B. P. Anderson, P. C. Haljan, et al., Phys. Rev. Lett. 83, 2498 (1999).

    Article  ADS  Google Scholar 

  41. N. K. Efremidis, K. Hizanidis, B. A. Malomed, and P. Di Trapani, Phys. Rev. Lett. 98, 113901 (2007).

  42. Y. Silberberg, Opt. Lett. 15, 1282 (1990).

    ADS  Google Scholar 

  43. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, London, 1997; Fizmatlit, Moscow, 2003).

    Google Scholar 

  44. S. V. Sazonov, Zh. Éksp. Teor. Fiz. 128(6), 1123 (2005) [JETP 101 (6), 979 (2005)].

    Google Scholar 

  45. A. B. Matsko, Yu. V. Rostovtsev, M. Fleishhauer, and M. O. Scully, Phys. Rev. Lett. 86, 2006 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sazonov.

Additional information

Original Russian Text © A.N. Bugay, S.V. Sazonov, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 2, pp. 390–405.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugay, A.N., Sazonov, S.V. Soliton generation via continuous stokes acoustic self-scattering of hypersonic waves in a paramagnetic crystal. J. Exp. Theor. Phys. 107, 331–343 (2008). https://doi.org/10.1134/S1063776108080177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108080177

PACS numbers

Navigation