Skip to main content
Log in

Numerical analysis of decaying nonlinear oscillations of a viscous liquid drop

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An adaptive grid numerical model is developed for simulating the dynamics of a viscous liquid drop whose initial shape is strongly disturbed by an external field. Simulated oscillations of a drop in microgravity and on a horizontal surface are compared with available numerical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C-M. Ho and Y-C. Tai, Annu. Rev. Fluid Mech. 30, 579 (1998).

    Article  ADS  Google Scholar 

  2. M. Francois and W. Shyy, Prog. Aerospace Sci. 38, 275 (2002).

    Article  ADS  Google Scholar 

  3. N. Chigier and R. D. Reitz, Atomization Sprays 9, 31 (1999).

    Google Scholar 

  4. P.-F. Paradis, T. Ishikawa, and S. Yoda, Int. J. Thermophys. 24, 1121 (2003).

    Article  Google Scholar 

  5. J. M. Floryan and H. Rasmussen, Appl. Mech. Rev. 42, 323 (1989).

    Article  MathSciNet  Google Scholar 

  6. E. D. Wilkes, S. D. Phillips, and A. Basaran, Phys. Fluids 11, 3577 (1999).

    Article  ADS  MATH  Google Scholar 

  7. D. B. Kothe and R. C. Mjolsness, AIAA J. 30, 2694 (1992).

    Article  MATH  ADS  Google Scholar 

  8. C. W. Hirt and B. D. Nichols, J. Comput. Phys. 39, 201 (1981).

    Article  MATH  ADS  Google Scholar 

  9. W. Shyy, H. S. Udaykumar, M. M. Rao, et al., Computational Fluid Dynamics with Moving Boundaries (Taylor and Francis, Washington, 1996).

    Google Scholar 

  10. S. O. Unverdi and G. Tryggvason, J. Comput. Phys. 100, 25 (1992).

    Article  MATH  ADS  Google Scholar 

  11. S. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New York, 1980; Énergoizdat, Moscow 1984).

    MATH  Google Scholar 

  12. A. Prosperetti, J. Fluid Mech. 100, 333 (1980).

    Article  MATH  ADS  Google Scholar 

  13. O. A. Basaran, J. Fluid Mech. 241, 169 (1992).

    Article  MATH  ADS  Google Scholar 

  14. S. Meradji, T. P. Lyubimova, D. V. Lyubimov, et al., Cryst. Res. Technol. 36, 729 (2001).

    Article  Google Scholar 

  15. F. Mashayek and N. Ashgriz, Phys. Fluids 10, 1071 (1998).

    Article  ADS  Google Scholar 

  16. L. B. Direktor, I. L. Maĭkov, and A. A. Sereda, in Proceedings of the Second International Workshop “Thermal and Physical Properties of Substances (Liquid Metals, Alloys, and Nanosystems),” Kabardino-Balkar State University, Nalchik, Russia 2006 (Nalchik, 2006), p. 67 [in Russian].

  17. I. Egry, J. Non-Cryst. Solids 250–252, 63 (1999).

    Article  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987; Fizmatlit, Moscow, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Maikov.

Additional information

Original Russian Text © I.L. Maikov, L.B. Director, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 6, pp. 1314–1321.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maikov, I.L., Director, L.B. Numerical analysis of decaying nonlinear oscillations of a viscous liquid drop. J. Exp. Theor. Phys. 106, 1151–1157 (2008). https://doi.org/10.1134/S1063776108060150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108060150

PACS numbers

Navigation