Skip to main content
Log in

Self-organization processes and topological defects in nanolayers in a nematic liquid crystal

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Atomic force microscopy is used to study the self-organization processes that occur during the formation of topological defects in nanomolecular layers in a nematic liquid crystal with the homeotropic orientation of its molecules with respect to the substrate. In this case, a smectic monolayer with a thickness of one molecule length (about 2.2 nm) forms on the substrate, and a nanomolecular layer of a nematic liquid crystal forms above this monolayer. In such virtually two-dimensional layers, numerous different nanoclusters, namely, hut structures, pyramids, raft structures with symmetry C nm (where n = 2, 4, 5, 6, 7, …, ∞), cones, and nanopools, form [1]. They have a regular shape close to the geometry of solid crystals. Modulated linear structures and topological point defects appear spontaneously in the nanopools and raft structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Butterworth-Heinemann, Oxford, 1984), Part 1, pp. 477–478, 542.

    Google Scholar 

  2. J. Nehring and A. Saupe, J. Chem. Soc., Faraday Trans. II 68, 1 (1972).

    Article  Google Scholar 

  3. C. Williams, P. Pieranski, and P. E. Cladis, Phys. Rev. Lett. 29, 30 (1972).

    Article  ADS  Google Scholar 

  4. G. Zhu, Phys. Rev. Lett. 49, 1332 (1982).

    Article  Google Scholar 

  5. L. Lin., C.-Q. Shu, J.-L. Shen, et al., Phys. Rev. Lett. 49, 1335 (1982).

    Article  ADS  Google Scholar 

  6. S. Zheng, Z. C. Liand, R. F. Shao, et al., Phys. Rev. A: At., Mol., Opt. Phys. 38, 5941 (1988).

    ADS  Google Scholar 

  7. V. G. Kamenskiĭ, Zh. Éksp. Teor. Fiz. 87(4), 1262 (1984) [Sov. Phys. JETP 60 (4), 723 (1984)].

    Google Scholar 

  8. V. G. Kamenskiĭ and S. S. Rozhkov, Zh. Éksp. Teor. Fiz. 89(1), 106 (1985) [Sov. Phys. JETP 62 (1), 60 (1985)].

    Google Scholar 

  9. F. Kh. Abdullaev, A. A. Abdumalikov, and P. K. Khabibullaev, Dokl. Akad. Nauk SSSR 298, 841 (1988) [Sov. Phys. Dokl. 33, 115 (1988)].

    Google Scholar 

  10. F. Kh. Abdullaev, A. A. Abdumalikov, and E. N. Tsoi, Phys. Status Solidi B 146, 457 (1988).

    Article  ADS  Google Scholar 

  11. P. de Genes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974; Mir, Moscow, 1977).

    Google Scholar 

  12. A. Rapini and M. J. Papoular, J. Phys., Colloq. 30, 4 (1969).

    Article  Google Scholar 

  13. W. Azzam, Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Ruhr-Universität, Bochum, 2003), p. 164.

    Google Scholar 

  14. Solver P47 Instruction Manual (NT-MDT, Zelenograd, Moscow region, Russia, 2005) [in Russian].

  15. N. M. Astaf’eva, Usp. Fiz. Nauk 166(11), 1145 (1996) [Phys. Usp. 39 (11), 1085 (1996)].

    Article  Google Scholar 

  16. J. Frohlich and K. Schneider, J. Comput. Phys. 130, 174 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Blatter, Wavelets-Eine Einführung (Vieweg, Braunschweig, 1998; Tekhnosfera, Moscow, 2004) [in German and in Russian].

    MATH  Google Scholar 

  18. K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: An Introduction (Springer, Berlin, 2003; Nauka, Moscow, 2006).

    Google Scholar 

  19. Modern Crystallography, Ed. by B. K. Vainshtein, A. A. Chernov, and L. A. Shuvalov (Nauka, Moscow, 1980; Springer-Verlag, Berlin, 1981), Vol. 3, p. 36.

    Google Scholar 

  20. I. E. Dzyaloshinskiĭ, E. M. Lifshits, and L. P. Pitaevskiĭ, Zh. Éksp. Teor. Fiz. 37, 229 (1959) [Sov. Phys. JETP 10, 161 (1959)].

    Google Scholar 

  21. Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988), p. 255 [in Russian].

    Google Scholar 

  22. R. B. Meyer, Mol. Cryst. Liq. Cryst. 16, 355 (1972).

    Article  Google Scholar 

  23. R. Zwanzig, J. Chem. Phys. 39, 1714 (1963).

    Article  ADS  Google Scholar 

  24. G. Barbero, A. N. Chuvyrov, and A. P. Krekhov, Int. J. Mod. Phys. B 6, 437 (1991).

    Article  ADS  Google Scholar 

  25. N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics (Nauka, Moscow, 1983; Reidel, Dordrecht, 1985), p. 96.

    Google Scholar 

  26. M. Ablowitz and H. Segur, Solitons and the Inverse Scattering Theory (SIAM, Philadelphia, 1981; Mir, Moscow, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Girfanova.

Additional information

Original Russian Text © A.N. Chuyrov, F.M. Girfanova, I.S. Mal’tsev, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 5, pp. 1081–1090.

About this article

Cite this article

Chuvyrov, A.N., Girfanova, F.M. & Mal’tsev, I.S. Self-organization processes and topological defects in nanolayers in a nematic liquid crystal. J. Exp. Theor. Phys. 106, 946–954 (2008). https://doi.org/10.1134/S1063776108050129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108050129

PACS numbers

Navigation