Skip to main content
Log in

On the relaxation of a medium after excitation with single fast heavy ions

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A plasma model of relaxation of a medium in heavy-ion tracks in condensed matter has been proposed. The model is based on the solution of time-dependent equations of radiative-collisional kinetics. The state of the medium, which is described in the framework of the classical model of multiple ionization of target atoms by a field of fast multiply charged ions, is used as the initial condition. The relaxation in the plasma is investigated using molecular dynamics simulation. An analysis of the results of the calculations performed has made it possible to determine the range of material parameters at which the plasma model actually changes over to the atomic model and to establish the conditions where the atomic model is a very rough approximation. It is demonstrated that the plasma model adequately describes the X-ray spectra recorded upon interaction of ion beams with condensed targets. An X-ray spectral method based on the plasma model is proposed for diagnosing the plasma in fast-ion tracks. The results obtained can be useful in examining the initial stage of defect formation in solids under irradiation with single fast heavy ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Miterev, Usp. Fiz. Nauk 172(10), 1131 (2002) [Phys. Usp. 45 (10), 1019 (2002)].

    Google Scholar 

  2. F. F. Komarov, Usp. Fiz. Nauk 173(12), 1287 (2003) [Phys. Usp. 46 (12), 1253 (2003)].

    Article  Google Scholar 

  3. R. L. Kauffman, J. H. McGuire, and P. Richard, Phys. Rev. A: At., Mol., Opt. Phys. 8, 1233 (1973).

    ADS  Google Scholar 

  4. R. L. Kauffman, C. W. Woods, K. A. Jamison, and P. Richard, Phys. Rev. A: At., Mol., Opt. Phys. 11, 872 (1975).

    ADS  Google Scholar 

  5. C. Schmiedekamp, B. L. Doyle, T. J. Gray, et al., Phys. Rev. A: At., Mol., Opt. Phys. 18, 1892 (1978).

    ADS  Google Scholar 

  6. Y. Awaya, T. Kambara, and Y. Kanai, Int. J. Mass Spectrom. 192, 49 (1999).

    Article  Google Scholar 

  7. A. M. Miterev, Khim. Vys. Energ. 14, 483 (1980).

    Google Scholar 

  8. G. G. Ritchie and C. Claussen, Nucl. Instrum. Methods Phys. Res. 198, 133 (1982).

    Article  Google Scholar 

  9. O. N. Rosmej, S. A. Pikuz, Jr., J. Wieser, et al., Rev. Sci. Instrum. 74, 5039 (2003).

    Article  ADS  Google Scholar 

  10. O. N. Rosmej, S. A. Pikuz, Jr., A. D. Fertman, et al., Phys. Rev. A: At., Mol., Opt. Phys. 72, 052901 (2005).

    Google Scholar 

  11. O. N. Rosmej, S. A. Pikuz, Jr., S. Korostiy, et al., Laser Part. Beams 23, 1 (2005).

    Google Scholar 

  12. S. A. Pikuz, Jr., V. P. Efremov, O. Rosmej, et al., J. Phys. A: Math. Gen. 39, 4765 (2006).

    Article  ADS  Google Scholar 

  13. I. V. Morozov and G. E. Norman, Zh. Éksp. Teor. Fiz. 127(3), 412 (2005) [JETP 100 (3) 370 (2005)].

    Google Scholar 

  14. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Plenum, New York, 1987).

    Google Scholar 

  15. L. A. Vainshtein, I. I. Sobel’man, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1995).

    Google Scholar 

  16. A. Ya. Faenov, S. A. Pikuz, and A. S. Shlyaptseva, Phys. Scr. 49, 41 (1994).

    Article  ADS  Google Scholar 

  17. G. Schiwietz, J. P. Biersack, D. Schneider, et al., Phys. Rev. B: Condens. Matter 41, 6262 (1990).

    ADS  Google Scholar 

  18. J. F. Ziegler, Nucl. Instrum. Methods Phys. Res., Sect. B 219–220, 1027 (2004).

    Article  Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1980), Part 1.

    Google Scholar 

  20. Yu. K. Kurilenkov, Teplofiz. Vys. Temp. 18, 1312 (1980).

    Google Scholar 

  21. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Dokl. Akad. Nauk SSSR 296, 576 (1987) [Sov. Phys. Dokl. 32, 752 (1987)].

    Google Scholar 

  22. N. A. Inogamov, A. M. Oparin, Yu. V. Petrov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69(4), 284 (1999) [JETP Lett. 69 (4), 310 (1999)].

    ADS  Google Scholar 

  23. J. Abdallah, Jr., G. Csanak, Y. Fukuda, et al., Phys. Rev. A: At., Mol., Opt. Phys. 68, 063201 (2003).

    Google Scholar 

  24. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. I. Anisimov, Appl. Phys. A 79, 767 (2004).

    Article  ADS  Google Scholar 

  25. A. Gokhman, J. Boemert, and A. Ulbricht, J. Nucl. Mater. 34, 195 (2004).

    Article  ADS  Google Scholar 

  26. A. Gokhman and J. Bohmert, Radiat. Eff. Defects Solids 158, 499 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lankin.

Additional information

Original Russian Text © A.V. Lankin, I.V. Morozov, G.É. Norman, I.Yu. Skobelev, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 133, No. 3, pp. 701–717.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lankin, A.V., Morozov, I.V., Norman, G.É. et al. On the relaxation of a medium after excitation with single fast heavy ions. J. Exp. Theor. Phys. 106, 608–622 (2008). https://doi.org/10.1134/S1063776108030217

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108030217

PACS numbers

Navigation